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PREFACE

THIS BOOK is a complete rewriting of the author's Elements of

Trigonometry. The direct approach to the various topics has been

maintained, but the explanations have been amplified and much

more use is made of illustrative worked examples. Great care has

been taken to make these examples instructive and to serve as pat-

terns for the problem work of the student. Many elementary

exercises and problems of current interest have been added.

The drill problems and the applications cover a sufficient range

to give the student in technical courses a working knowledge of

trigonometry as a tool subject.

Among the applications of plane trigonometry those relating to

mensuration have received full treatment, as also the subjects of

vectors, plane surveying and plane sailing. A treatment of the

mil unit of angle and its applications is given along with a brief

table of the functions at intervals of 40 mils.

The ideas of inverse functions and of trigonometric equations

are introduced early and later amplified in a separate chapter.

The subject of spherical trigonometry is treated in two chapters.

In the first of these the formulas are derived and applied to the so-

lution of spherical triangles/ the second is devoted to applications,

principally in navigation and nautical astronomy. Considerable

attention is given to the use of the haversine and a four-place table

is provided so that the student may become familiar with the use of

this important function.

The subject of great circle sailing, including the
"
vertex method,"

the construction and use of the Mercator chart, and the basic

problems of nautical astronomy have received careful attention.

For a brief course, or where more time is desired for spherical

trigonometry, the following curtailments and omissions are advised.

1. Omit the long list of identities of 77.

2. Take only a limited selection of the problems of 90.

3. Omit Chapter IX, on inverse functions and trigonometric
iii
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equations. The earlier treatment of these subjects is sufficient for

a brief course.

4. Omit Chapter X, on analytical trigonometry.

With these omissions the presentation of the subject is suitable

for use in the senior high school.

The author wishes to acknowledge his indebtedness to Pro-

fessor C. J. Rees of the University of Delaware and Professor

R. H. Marquis of Ohio University who have read the manu-

script and offered valuable suggestions.

W. C. BRENKE
August, 1942
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CHAPTER

I

THE
TRIGONOMETRIC

FUNCTIONS

1. Why we study trigonometry.

The subject of trigonometry may be considered, in one of its

two principal aspects, to round out the subject of geometry. It

supplies the means of expressing in an exact quantitative way
much that geometry does only qualitatively. Here are some

examples.

(1) Geometry tells us that, in a given circle, a given central

angle subtends a definite chord, and how to construct the figure

on any desired scale. Trigonometry enables us to state an exact

formula for the length of the chord. The great astronomer

Ptolemy calculated a table of chords corresponding to various

central angles.

(2) Geometry tells us that a triangle is completely determined

when one side and two angles are given, and how to construct

the triangle on any desired scale. Trigonometry provides us

with exact formulas for calculating the unknown parts of the

triangle.

(3) Geometry tells us how to construct the resultant force of

two given forces. Trigonometry enables us to calculate this

resultant force.

(4) The geometry of the sphere, rounded out by spherical

trigonometry, is of basic importance to the navigator and

astronomer.

1



2 THE TRIGONOMETRIC FUNCTIONS

The second major aspect of our subject results from the fact

that the
"
trigonometric functions ", which we shall study

presently, are peculiarly adapted to express many important

relations in physics and mechanics and related fields. These

functions are among the most useful and basic tools which are

employed in the application of mathematics to the physical

sciences.

To indicate at least one such field of applications we note that

the studies of periodic phenomena, such as the vibration of a

pendulum or of a violin string, the periodic motion of a planet

about the sun or of an electron about the nucleus of its atom,

and innumerable other events of a regularly recurring charac-

ter, have their roots in the study of trigonometry.

2. Angles of any magnitude, positive or negative.

Consider Z XOP (figure) as generated by
a moving line which rotates about from

the position OX to the position OP.

o x Divide the plane into four quadrants (I, II,

III, and IV in the figure below) by means of

two rectangular axes X'X and Y'Y.

Quadrant I is that covered by a half-line or ray rotating from

in IV

FIG. 2a

OX to OF in the direction of the curved arrow, counterclockwise,

the angle turned through being 90. Let a moving ray start

from the position OX, Fig. 2b, and rotate into the positions



RECTANGULAR COORDINATES 3

OPi, OP2 , OPs, and OP4 successively, thus generating the angles

XOPi, XOP2 ,
XOP3 ,

and XOP* respectively.

OX is called the initial line, and OPi the terminal line of the

ii

angle XOPi, and similarly for any other angle.

An angle is positive when the generating ray rotates counter"

clockwise (in the direction of the curved arrow in the figure),

negative when the generating ray moves clockwise.

The quadrant of an angle is that quadrant in which its

terminal line lies. The angle is said to lie in this quadrant.

The initial line OX, and any terminal line, as OP*>, may
always be considered to form two angles numerically less than

360, QS + 120 and - 240 in the figure.

When the moving ray rotates from OX throiigh more than

one complete revolution, an angle greater than 360 is gener-

ated. Thus a rotation in the positive direction (positive rota-

tion) through 1| revolutions generates an angle of 480, lying

in the second quadrant; a negative rotation through 2 revolu-

tions generates an angle of - 780, lying in the fourth quadrant.

3. Rectangular coordinates.

With respect to the reference frame of Fig. 2a, any point in

the plane may be located by means of its distances from the two

reference lines and by adopting a rule to distinguish between the

different quadrants.

The two distances of point P from the reference lines are
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usually indicated by letters, as x and y in Fig. 3, and are named
as follows:

Pr ^_-

y +

in

-i >-X

IV

FIG. 3

x abscissa of point P, y = ordinate of point P.

number pair (x, y) are called the rectangular coordinates

of point P.

To distinguish between the quadrants we use signed numbers

for the values of x and ?/, as indicated in the figure. This may
be summed up in the following table.

Quadrant Abscissa Ordinate

I + +
II - +

III

IV +

Exercise. On cross-ruled paper draw a pair of reference lines, mark
them with arrows to indicate the first quadrant, and locate the points

(x, y) determined by the following pairs of numbers. The first number is

the abscissa, the second the ordinate.

(2, 3), (4, 2), (- 2, 3), (- 4, 2), (- 2,
-

3), (- 4,
-

2), (2,
-

3), (4,
-

2),

(5, 0), (0, 3), (- 5, 0), (0,
-

3).

If P denotes any of these points estimate as well as you can the number
of degrees in the positive angle XOP', in the negative angle XOP.

4. The trigonometric (unctions of any angle.

In Fig. 3 draw a line from through P, where P may lie in

any of the four quadrants. Consider OP as the terminal line of
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an angle with OX as the initial line. We are thus led to Fig. 4,

in which x is the abscissa and y the ordinate of point P, and
r = OP is the distance of point P from the origin. The dis-

tance OP is always considered to be positive, so that r always
stands for a positive number.

FIG. 4

By taking the numbers x, T/, r in pairs we can form six ratios,

namely

y x y r r x
> > y y y

r r x y x y

These ratios are defined to be the six trigonometric functions of

angle XOP, and are named as follows.

ordinate (of P)The sine of angle XOP

The cosine of angle XOP

The tangent of angle XOP =

The cotangent of angle XOP =

The secant of angle XOP

The cosecant of angle XOP =

distance (of P)*

abscissa

distance

ordinate

abscissa

abscissa

ordinate

distance

abscissa

distance

ordinate
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It will be convenient to use a single letter to designate our

angle XOP. For this purpose we shall use the Greek letter

alpha, and put a = angle XOP. Introducing also the letters x,

y and r, and abbreviating the names of the trigonometric func-

tions, we have

sin a y.V
x

cos a = -
; sec a = -

= ^; cot

CSC a = -

y
r

x

x

y

Here x and y stand for signed numbers according to the quadrant

of the angle a; the distance r is always taken as a positive

number.

What is the effect of changing the position of P along the

terminal side of the angle? The values of
, y and r will change,

but, because of the similarity of the triangles, their ratios will

remain unchanged. Hence the trigonometric functions depend

only on the angle a, and not at all on the particular point P
which we select on the terminal side of the angle.

The signs of the trigonometric functions.

According to the definitions we can construct a table showing

the signs of the trigonometric functions in the various quad-

rants. In quadrant I, x, y, r all are positive and likewise the

ratio of any pair of them is positive. Therefore, in quadrant I

all the six trigonometric functions are positive.

In quadrant II, y and r are positive and x is negative. There-

fore the sine function (ratio y/r) and the cosecant function

(ratio r/y) are positive; the other four functions are negative.

Table of signs of the trigonometric functions

Quadr. sin a cos a tan a cot a sec a esc a

I + + -f + + +
II + - - - - +

III - - + +
IV - + - - + -



APPROXIMATE VALUES OF THE FUNCTIONS

Let the student verify carefully the signs in this table. He
should be prepared to state instantly the sign of any function in

any quadrant.

Observe that in the first quadrant all the functions are posi-

tive; in the other quadrants a function and its reciprocal are

positive, the remaining four are negative.

EXERCISES 1.

Determine the values of the six trigonometric functions of angle XOP
when the coordinates (x, y) of P are as given as below. Give exact values.

1. (3, 4). 6. (12, 5). 9. (8, 15). 13. (2, 3).

2. (- 3, 4). 6. (- 12, 5). 10. (- 8, 15). 14. (- 2, 3).

3. (3,
-

4). 7. (12,
-

5). 11. (8,
-

15). 15. (2,
-

3).

4. (- 3,
-

4). 8. (- 12,
-

5). 12. (- 8,
-

15). 16. (- 2,
-

3).

5. Approximate values of the functions of any angle.

If in the last figure the distances OP had been taken all of the

same length, all the

points P would lie on

the circumference of a

circle with center at 0.

Let us draw a circle

with as center and

unit radius (figure;

1 = 10 small divisions).

Then for any angle

XOP we have

sin XOP -
^y-

= MP,

cos XOP =
?p

= OM.

Thus the figure shows

sin 30 - .5

sin 147 - .56

sin 228= -.73

sin 317 - -.69

FIG. 5

and

and

and

and

cos 30 =

cos 147 =

cos 228 =

cos 317 =

.86;

-.83;

-.67;

.72.
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By noting the values of MP at regular intervals as P moves

around the circumference, a complete table of values may be

constructed.

Hence approximate values of the sines and cosines of all angles

may be read off directly from the figure. The other functions

MP
may be obtained by division, since tan XOP =

TJ,
etc. They

may also be constructed graphically by a method explained in

the next article.

Exercise. By use of the figure determine to two decimal places the

values needed to fill out the following table.

6. Line values of the trigonometric (unctions.

The lines MP and OM, Fig. 5, measured with OP as a unit of

length, represent the values of sin XOP and cos XOP respectively.

They are called the line values of these functions.

The origin of the term sine is obscure. The Hindus used jya
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meaning chord and an Arabic distortion of the Hindu word was

rendered by sinus in later Latin works.

We shall note briefly the line values of the other trigonometric

functions for the case of acute angles. Other angles may be

treated similarly, with suitable consideration of signs according

to the quadrant.

In Fig. 6a let a be an acute angle with initial line OX and

terminal line OQ, NQ being tangent to the circle of radius 1

and center at the vertex of the angle. In triangle ONQ:

tan a
ord. NQ NQ
abs. ON

~
1

dist. OQ = OQ
abs. ON

~
I

Hence tan a is measured by a segment of a line tangent to the

circle and sec a is measured by a segment of a secant line. This

indicates the origin of the names of these functions.

FIG. 6a FIG. 6b

In Fig. 6b, a = angle XOS, and RS is tangent to the circle at

R. Then

OM OM
r

1

. n ,,
cot a =-^rcJ

= -r = OM = RS.

csc a = OS OS
MS

= T
NOTE. If, in Fig. 6a, we produce line NQ upward indefinitely and let

angle a. increase toward 90, we see that both tan a. and sec a will increase

very rapidly and without limit. Fig. 6b shows similarly that cot a and

csc a increase rapidly and without limit as angle diminishes toward 0.
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7. The trigonometric functions of acute angles.

Let us consider a given acute angle a and construct a right

triangle ABC (Fig. 7a) containing this acute angle. Place the

A ABC in our reference frame, (Fig. 2a), so that the vertex A of

angle a shall fall at 0, AC shall fall along the initial line OX,
and AB shall fall in the first quadrant. (Fig. 7b).

opp.

adj.

FIG. 7a FIG. 7b

Using point B on the terminal side of angle a as point P in

Fig. 4 we shall have

AC = x = abscissa of point 5;

CB = y = ordinate of point 5;

AB = r = distance of point B.

We can then write down the six trigonometric functions of angle

a according to the definitions. For example,

ordinate of B CB y
distance of B

~
AB

~
r

sin a

But in the original triangle ABC (Fig. 7a), CB is the side

opposite angle a, and AB is the hypotenuse and therefore, with

respect to the original triangle, we can say that the sine of angle

a is the ratio of the side opposite angle a to the hypotenuse.

Any other right triangle containing the same acute angle a

would be similar to A ABC and would have the ratio of any
two of its sides equal to the ratio of the corresponding sides of

A ABC. Hence it would furnish the same values for the

trigonometric functions of the angle a.

We may therefore restate our definitions of the six trigono-

metric functions, as applied to acute angles.

Let a be an acute angle, A ABC a right triangle containing
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this angle, AB its hypotenuse, AC the side adjacent to /. a and

CB the side opposite to Z a. (Fig. 7a). Then

opposite side

hypotenuse

adjacent side

hypotenuse

opposite side
tan a = -= r-rr"

adjacent side

sin a. =

cos a =

esc a

sec a

cot a

hypotenuse

opposite side

hypotenuse

adjacent side

adjacent side

opposite side

. Exercise 1. Use Fig. 5 to obtain approximate values, to two decimal

places, of the functions of 20, 50 and 70. Check by the table in 8.

Exercise 2. In the adjacent figure de-

termine the exact values of the six func-

tions of angle BAC\ of angle CAD; of

angle BEF, F being the midpoint of EC.

8. Brief table of the trigonometric functions.
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EXERCISES 2.

1. Obtain from this table the values of the six functions of 32.5 to

three decimal places, assuming that they lie halfway between the values

for 30 and 35.

2. Obtain to three decimal places the values sin 31, sin 32, sin 33 and
sin 34, by breaking up the interval between sin 30 and sin 35 into five

equal parts.

3. Obtain the values of cos 61, cos 62, cos 63, cos 64, and of sec 61,
sec 62, sec 63, sec 64, to three decimal places.

4. Determine the angle a to the nearest degree if sin a = 0.594; if

cos a = 0.594; if tan a = 0.384; if esc a - 1.116.

5. For what angle does sin a = cos a? tan a = cot a? sec = csc a?

The following equations are exact; show that they are very nearly sat-

isfied by the values taken from the table.

6. 2 sin 30 cos 30 = sin 60.

7. cos2 30 + sin2 30 = 1. 9. cos2 40 + sin 2 40 = 1.

8. cos2 30 - sin2 30 = cos 60. 10. cos2 40 - sin2 40 = cos 80.

9. The (unctions of 45 , 30 and 60.

Any isosceles right triangle has each acute angle equal to 45.

A 30-60 right triangle may be obtained by bisecting an equi-

lateral triangle. The simplest numbers to use for the lengths of

the sides are shown in Figs. 8a, 8b.

B

.B

FIG. 8a FIG. 8b

To obtain the functions of 45, we apply the definitions of

7 to Fig. 8a.

1 V2
sin 45 = 4= =~

\/2 2
0.707+. esc 45 = V2 = 1.414+.

cos 45 - -4= - -TT = 0.707+. sec 45 = V2 = 1.414-K
\/2 2

tan 45 - 1. cot 45 = 1.
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To obtain the functions of 30 and of 60 we apply our defini-

tions to Fig. 8b. Note that side CB is opposite to 30 and also

adjacent to 60; AC is adjacent to 30 and opposite to 60.

The same triangle serves for both angles.

sin 30 = cos 60 = = 0.5.

cos 30 = sin 60 = - = 0.866+.

tan 30 = cot 60 = -L = _ = 0.577+.
\/3

esc 30 = sec 60 = 2.

2
sec 30 = esc 60 = -== = = 1.155+.

v3 o

cot 30 = tan 60 = \/3 = 1.732+.

The functions of 30, 45, and 60 are so useful that the

student should learn to read them off promptly from a mental

picture of the isosceles right triangle and the bisected equilateral

triangle.

EXERCISES

Verify the following equations by substituting the (exact) values of the

functions.

1. sin 30 cot 30 = cos 30. 4. cot 30 sec 30 = esc 30.

2. tan 45 cos 45 = sin 45. 6. cos 30 sec 00 = cot 30.

3. sin 60 sec 60 = tan 60. 6. sec 45 esc 45 - cot 45 = tan 45.

7. cot 30 sin 60 + cos 00 = esc 30.

8. tan 30 + tan 45 = tan 30(1 +, cot 30).

9. (1
- cos 45) (1 + esc 45) = sin 45.

10. (esc 60 -f cot 60) (esc 60 - cot 60) - 1.

10. Given one function, to determine the other functions.

When a function of an acute angle is given, the angle may be

constructed by writing the given function as a fraction, and

constructing a right triangle, two of whose sides are the numer-

ator and denominator of this fraction respectively, or like

multiples of these quantities. Also, since the third side of the

triangle can be calculated from the other two, all the other

functions of the angle may be found when one function is given.
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Example 1.

, 3 / opp. side\
TQT1 ru I Itctii or x l j. . j /

4\ 007. stae/

Lay off AC = 4 and C5 =
3, CB perpendicular

to AC.

Then AB = V42
-f 32 = 5.

Hence sin a = f ;
cos <* = f ;

esc = f ;
sec <*

~
f ;

cot a -
$.

Scaling off the angle with a protractor, we
have a = 37. By taking from the table the angle whose tangent is

0.75 we have = 37 as before.

4

Fia. 9

Example 2.

sec a = 3
3

I"

hyp.

adj. side/

Lay off AC = 1. With A as center and radius = 3, strike

an arc to cut the perpendicular drawn to AC at C. This

determines the point B.

The solution may now be completed as in example 1.

Another method of constructing the triangle in this

example is to calculate CB first, and then to proceed as

in example 1.

11. EXERCISES 3

Determine the angle (approximately) and the remaining functions, when

1. sin a -. 6. tan a = f . 11. sec a = 2.

tan = 3. 12.

tan = V3. 13.

cot a 1. 14.

cot = 2.5. 15.

2 is impossible.

1.1 is impossible.

\ is impossible.

0.9 is impossible.

sin a f .

sin a - 0.4.

cos a - f .

COS a **
J.

7.

8.

9.

10.

esc a.
=

.

cos a = 0.3.

esc a = 2.5.

tan a. = 10.

16. Show that the equation sin a -

17. Show that the equation cos a

18. Show that the equation sec a

19. Show that the equation esc a.

When a is an acute angle show that,

20. sin a. lies between and 1.

21. cos a lies between and 1.

22. sec a and esc a. are always greater than 1.

23. tan a and cot a may have any value from to oo .
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1 2. Functions of complementary angles.

Since the sum of the two acute

angles of a right triangle is 90, they

are complementary.

By definition we have, from Fig. 11,

. opp. side 6
sin 8 = -^f- = - = cos a.

c
_

By considering the other functions pIO n
and tabulating results we have:

sin ft
= cos a; tan ft

= cot or; esc ft
= sec a;

cos ft
= sin a; cot j3

= tan a; sec /8
= esc a.

Complementary functions, or cofunctions.

The cosine is called the complementary function to the sine

and conversely. Similarly tangent and cotangent are mutually

complementary, and secant and cosecant. The function which

is complementary to a function is called its cofunction.

RULE: .4 ny function of an acute angle is equal to the cofunction

of the complementary angle.

Exercise. Verify this rule when a = 30, 45, and 60. See also the

table of 8.

13. Application of the trigonometric functions to the solution

of right triangles.

When two parts of a right triangle are known, exclusive of the

right angle, the triangle may be constructed and the remaining

parts determined graphically. By the aid of tables of the

trigonometric functions, the unknown parts may also be cal-

culated.

RULE: When two parts of a right triangle are given (the right

angle excepted) and a third part is required, write down that equa-

tion of 7 which involves the two given parts and the required part.

Substitute in it the values of the given parts, and solve for the re-

quired part.

An exceptional case arises when two sides are given and the

third side is required. In this case we may use the formula

a2
-f 62 = c2 . It will usually be better, however, unless the given
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sides are represented by simple numbers, to solve for one of the

angles first, and then to obtain the third side from this angle and

one of the given sides.

Example.

In right A ABC, given angle ACB = 90, angle CAB = = 40,
and side 6 = 60. Find the other parts of the triangle, c, a, and angle

ABC - 0.

B

'40
w

60

FIG. 12

To get /?, we have = 90 - a = 50.

To get a, take
j-

- tan a or a = b tan a.

Finally, c is determined from

cos or c = *= b sec .

COS a

From the table of 8, tan 40 = 0.839

and sec 40 = 1.305.

Hence a = 60 X 0.839 = 50.340

and c = 60 X 1.305 = 78.300.

As a check, we should have a = c cos 0, or 50.340 = 78.300 X 0.643.

14. EXERCISES 4

Determine the unknown parts of right triangle ABC, C being 90, from
the parts given below. Check results by graphic solution arid by a check

formula containing the unknown parts. Use the table of 8.

1. a = 35, a _ 100. 6. a. 15, a - 0.15.

2. a . 65, 6 = 150. 7. - 50, c - 0.045.

3. a - 48, c - 75. 8. - 80, c = 1.25.

4. - 33, c = 50. 9. - 52, a - 16|.

6. - 58, b - 750. 10. a = 25, b 0.04.

11. Find the length of chord subtended by a central angle of 110 in a
circle of radius 50 ft. (First find the half-chord.)

12. Find the central angle subtended by a chord of 90 ft. in a circle of

radius 200 ft.
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13. Find the radius of the circle in which a chord of 120 ft. subtends an

angle of 70.

14. Find the length of side of a regular decagon inscribed in a circle of

radius 300 ft,

16. Find the length of side of a regular pentagon circumscribed about a

circle of radius 200 ft.

16. From a point in the same horizontal plane as the foot of a flag polo,

and 200 ft. from it, the angle of elevation of the top is 20. How high is

the pole?

17. A vertical pole 35 ft. high casts a shadow 50 ft. long on level ground.
Find the altitude of the sun.

18. If a road rises at an angle of 5, how many feet does it rise in a

distance of one mile measured along the road?

19. If the long arm of a carpenter's square is 24 inches, how far along
the short arm should he place a mark so that the line from the mark to

the far end of the long arm will make an angle of 22.5 with the long arm?

20. In Ex. 19 what would be the angle if the mark were placed on the

short side 12 J inches from the vertex of the right angle?



CHAPTER

ii VARIATION OF THE
TRIGONOMETRIC
FUNCTIONS

1 5. Variation of the sine (unction. Graph. Periodicity.

Suppose the point P of Fig. 5 to describe the circumference of

the circle in such a way that angle XOP varies continuously

from to 360. Let us trace the changes in the ordinate MP
or, what is the same thing, in the sine of angle XOP.

In quadrant I, MP or sin XOP increases from to +1.

In quadrant II, MP or sin XOP decreases from -f 1 to 0.

In quadrant III, MP or sin XOP decreases from to -1.

In quadrant IV, MP or sin XOP increases from - 1 to 0.

To represent these changes graphically we shall take x to

stand for the number of degrees in angle XOP and make a dia-

gram showing the value of sin x for a selected set of values of

angle x.

NOTE. It will be convenient here to use the letter x to represent our

variable angle. This use of the letter should not be confused with its

earlier use as the abscissa of a point.

In Fig. 13, below, the horizontal central line is the angle scale,

on which one division is taken to represent 15 of angle, so that

six divisions represent 90. On the angle scale, or x-axis, a dis-

tance measured to the right from represents a positive angle x.

The quadrantal values x = 90, 180, 270, 360 are represented

by 6, 12, 18, 24 divisions respectively.

18



VARIATION OF THE SINE FUNCTION 19

On the vertical scale we choose a convenient length to repre-

sent the sine of 90, which is 1. This is subdivided into 5

divisions in the figure.

90' 180 270 360

+ 1

-I -1

FIG. 13

At intervals of 15 on the angle scale, starting with x =
0,

dots are placed above or below this scale, the height of each dot

representing the value of sin x. These values may be read off

from Fig. 5. Joining the dots by a smooth curve gives us a

graphic picture of the varying values of sin x, as x changes from
to 360. The approximate value of the sine of any angle can

be read off at once from this graph of sm x, commonly called the

szric curve.

Periodicity. The sine curve has a simple wave form. By con-

tinuing it from 360 to 720 another wave would appear, and so

on indefinitely. By taking negative values of x, to the left from

0, these waves could be continued to the left.

A function of x, f(x), which goes through the complete cycle of

all its values when x ranges from x = a to x = a + h, and again
when x goes from a + h to a + 2/?, and so on, is called aperiodic

function with period h. In symbols,

/(*) = f(* + h) = f(x + 2h) = f(x nh),

when n is any positive integer.

The function sin x has this character because

sin x - sin (x + 360) = sin (x n-360 ).

Therefore sin x is a periodic function with period 360.
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16. Variation of the cosine. Graph. Periodicity.

In Fig. 5 the abscissa OM gives the value of the cosine of angle

XOP. In the notation of 15, OM = cos x. We see that OM,
or cos x, varies from 1 to in quadrant I, from to - 1 in

quadrant II, from -1 to in quadrant III, and from to +1

in quadrant IV,

If we take the values of cos x for values of x at intervals of

15, starting with x = 0, and place dots to mark these values as

was done for sin x
}
we obtain the graph of cos x, or the cosine

curve.

90 180

FIG. 14

270

-1

360

This is a wave curve just like the sine curve, but with the

crests of the wave 90 behind the crests of the sine wave. We say

that the two waves differ in
"
phase

"
by 90. See Fig. 15.

Periodicity. Just as for the sine function we have

cos x = cos (x + 360) = cos (x w-360).

Therefore, cos x is a periodic function with period 360.

+ 1

90 180 270 360 450 540 630

-90 90 180 270 360 450 540 630
C

FIG. 15

For convenient comparison we show the graphs of both sin x

and cos x on a single diagram.
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EXERCISES

1. For what values of x is sin x = 0? cos x = 0?

2. For what values of x is sin x = 1? cos x = 1?

3. For what values of x is sin x = cos xl

1 7. Variation of sec x and esc x. Graphs. Periodicity.

From the definitions of sin x and esc x we have

sin x =
ordinate

esc x
distance

.'. esc x
1

distance'
v^ ~

ordinate sin

Hence when sin x = +1 or -1, also esc x = +1 or -1. As sin x

decreases and approaches 0, esc x will increase arid grow rapidly

-90

-90 180 270

FIG. 16

360 450 540

larger in numerical value. Fig. 16 shows the graph of esc x and

its relation to the graph of sin x.

Likewise we have sec x =
,
and Fig. 16 shows the graphcosx 1

of sec x in its relation to cos x.

When x = 0, sin x = and esc has no value. When x is a

small positive angle, as x = 1, sin x is quite small and esc x is

very large. As angle x approaches zero from the right, e.g.

3 = 1, x = 0.1, x = 0.01, x = 0.001, etc., esc x increases

indefinitely. We say that esc x becomes positively infinite as x

approaches from the right and write esc (0 +) = 4- When
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x is a small negative angle, as x = -1, esc x is represented by a

large negative number. As x approaches from the left esc x

increases indefinitely in the negative direction; esc a: becomes

negatively infinite as x approaches from the left and we write

esc (0 -) = oo. More briefly we write esc = < ac-

cording as is approached from the right or the left. A similar

situation exists at 180 and at all other even multiples of 90,

positive or negative.

In the same way we are led to write sec (90 -) = + and

sec (90 +) = - oo
, or, more briefly, sec 90 = oo

; similarly

at all odd multiples of 90.

NOTE. It should Ixj carefully noted that the symbol is not a number,
and that the statement esc = oo does not assign a value to esc 0.

It merely indicates that, as angle x approaches 0, esc x increases or de-

creases without limit.

1 8. Variation of tan x and cot x. Graphs. Periodicity.

In quadrant I, tan x starts at when x = 0, becomes 1 at 45

and increases rapidly and without bound as x approaches 90.

Just after x = 90 tan x has a large negative value, becomes -1

at x = 135 and at x = 180. In quadrant III the values in

360 450 540

-90 180 270

FIG. 17

quadrant I are repeated; in quadrant IV, the values in quadrant

II are repeated. Similarly we can trace the changes in cot x.
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The graphs of these two functions are shown in Fig. 17. Be-

cause cot x = 1 -s- tan x
y
either function has a large value when

the other has a small value. The two functions are both positive

or both negative, according to the quadrant of the angle.

Periodicity. The functions tan x and cot x are periodic, with

period 180.

We have tan x = tan (x + 180) = tan (x n-180).

Similarly for cot x.

As x approaches 90 tan x increases (or decreases) without

limit. We write tan 90 =
. Also tan 270 =

,
etc.

Likewise cot =
,
cot 180 =

,
etc.

Exercise. Make a chart showing all six of the trigonometric functions

on one diagram. Dotted lines, or lines of different colors, may be used

to distinguish the different curves.

1 9. Relations between the (unctions of an angle.

From the general definitions of the functions given in 4,

putting angle XOP =
x, we find that

1 1.1
sin x =

; cos x =
; tan x

esc x sec x cot x

ordinate

ordinate distance sin x cos x
tan x ^

i

~ ==:
i

=
* cot/ x ~

: .

abscissa abscissa cosx sin x

distance

Also, whatever be the quadrant of angle XOP = x (figure of

4), we have

(ordinate)
2 + (abscissa)

2 = (distance)
2

.

Dividing this equation through in turn by (distance)
2

,

(abscissa)
2

,
and (ordinate)

2
, and expressing the resulting ratios

as functions we have

sin2 x -f cos2 x =
1,

1 -f tan2 x = sec2 x,

1 + cot2 x - esc2
x.
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All the above relations between the functions of angle x are

true for all values of x. They form a first set of working formu-

las, and should be thoroughly committed to memory. They are

collected below, as

Formulas, Group A

,-, . 1 (6) sm2 x + cos2 x = 1.

(1) sin x =
^

esc x , A
. . sin x

* (4) tan x =
1 rnc r

(2) cos x = - (7) 1 4- tarf x = sec2 x.
secx /r v . cos x

. (5) co* x =
, . 1 sin x
(6) tanX ~^Tx (8) 1 + co? x = esc2 x.

We shall apply these formulas in two examples.

Example 1.

Prove that tan x + cot x = sec x esc x.

sin x
,
cos z sin'

2 x -f cos2 x
tan x + cot x =

;
h

cos x sin x sin x cos x

I 1 1

Example 2.

Prove that

esc

tan x -\- cot a;

esc x esc

sin x cos sin a: cos x

= COS X.

= csc x sec x.

tan x + cot x sin x cosx

cos x sin x

csc x

sin2 x -f cos2 x

sin x cos x

csc x

1
csc x sm x cos x = cos x.

sin x cos x

In both examples all the steps taken are true for all values of x,

since this is true of all the formulas of group A. Hence the given

equations are true for all values of x for which the functions are de-

fined, and they are therefore called trigonometric identities.

The equation sin2 x - cos2 x = 1 is not true for all values of x, but

holds only for certain special values; it is not an identity.
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20. EXERCISES 5

Prove the following identities:

1. sin x cot x = cos x. M esc x
.,

4. = sec x.
1 cot x

2. = cos x.
tan x esc x 5. (sin

2 x + cos2
a;)

2 = 1.

_ see x sin
3. = esc x. 6. = tan2

0.
tan x cos cot 5

(For names of Greek letters see first page of appendix.)

7. (esc 6 - cot e) (esc 6 + cot 0) = 1.

8. (sec x - tan x) (sec x + tan x) = 1.

9. (sin 4- cos 0)
2 = 1 + 2 sin cos 0.

10. sin2
a. + cos- a = esc2 a - cot- a.

11. (sin a cos )
2 = 12 sin a cos a.

12. sin4 x cos 4 x = sin 2 x cos2 x.

13. (1 - cos2
JT) sec2 x = tan2 x.

14. tan2 - sin 2 = tan2 sin2
0.

16. sec esc - cot = tan 0.

16. cot q? cos <p + sin <p
= esc (p.

17. cos2
v? esc2

v?
= esc2

v?
- 1.

sin (p 1 - cos (p

1 + cos (p sin (

1 + tan2
ft sin2

18.

19.
1 -f cot2

ft cos2
ft

20. (1 - cos2
ft) (1 + cot2

ft)
= 1.

21. tan4 x - sec4 x = 1 - 2 sec2 x.

cos x + sin x 1 -f tan x

cos x - sin x 1 - tan x

23. (tan x -
1) (cot x -

1) = 2 - sec x esc x.

sin
24. esc + cot = -

1 - cos

26. (a cos x - 6 sin x)
2 + (a sin x + 6 cos x)

2 = a2 + 62
.

26. cos2
<p + (sin (p cos 0)

2 + (sin (p sin 0)
2 = 1.

27. tan a + tan ft
= tan a tan (cot a + cot ft).

21 . The functions of any angle in terms of the functions of an acute

angle.

It is possible to express in a simple manner any function of any

angle in terms of the proper function of an acute angle. Then

a table of the values of the functions of angles from to 90

will serve for all angles. In fact, in view of 12, a table of func-

tions of angles from to 45 would be sufficient, though not

convenient.
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I. Any angle, positive or negative, can be made to corre-

spond to a positive acute angle by adding to it, or subtracting

from it, an integral multiple of 90.

Examples.

(a) 780 - 8 X 90 = 60. (c) 510 - 5 X 90 = 60.

(b)
- 480 + 6 X 90 = 60. (d)

- 750 + 9 X 90 = 60.

,60
510

X

(W

Y60

(d)
-750

-480
FIG. 18

In what follows, we designate the original angle by 6 (theta)

and the new angle by 6'.

II. Let OP be the terminal line of a given angle 0. (Fig. 19)

When angle is changed by an even multiple of 90 the

terminal line of the new angle, 0', will coincide with OP or with

M'

FIG. 19

its continuation OP'. In the first case the angles 6 and 0' have

the same terminal line and hence the same set of function values.

In the second case the functions of d' are determined by A OM'P'

which is directly similar to A OMP, ordinate corresponding to

ordinate and abscissa to abscissa. Therefore any trigonometric

ratio from A OMP will have the same numerical value as the

corresponding ratio from A OM f

P', but may differ from it in

sign.
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RULE (a). Any function of an angle 6 is numerically equal to the

same function of 0', when 0' differs from 6 by an even multiple of

90.

In symbols, if /stands for any one of the six functions,

f(0)
=

/(0') where 6' = 6 n x 90; n even.

When the new angle 0' is an acute angle (first quadrant) choose

the sign before /(0') -j- or -
according as the function of the original

angle is + or .

Examples.

(The student should draw illustrative figures.)

1. 600 - 6 X 90 = 60; sin 600 is negative and tan 600 is positive.

.-. sin 600 = - sin 60; tan 600 = + tan 60.

2. - 510+ 6X 90 = 30; sec (- 510) is - and cot (- 510) is +.
/. sec (- 510) = - sec 30; cot (- 510) = cot 30.

III. Again let OP be the terminal line of a given angle 0. In

Fig. 20 angle is taken to be in quadrant II.

When angle is changed by an odd multiple of 90 the terminal

M"

y"

FIG. 20

line of the new angle, 0', will lie at right angles to OP, in the

direction OP' or OP". If we take 0' as the first quadrant angle

XOP', we note that A OM'P' is inversely similar to A OMP,
in the sense that abscissa x' corresponds to ordinate yy

and

ordinate y' is homologous to abscissa x. Hence any function of
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6 is numerically equal to the co-function of 0'. Exactly the same

is true if we take 6' as having the terminal line OP". So we have

RULE (b). Any function of an angle is numerically equal to the

cofunction of 0', when 0' differs from by an odd multiple of 90.

In symbols, if / stands for any one of the six functions,

f(ff)
=

co-/(0'), where 6' = 6 n x 90; n odd.

When 0' is an acute angle (first quadrant) choose the sign

before co-/(0') 4- or - according as the function of the original

angle 0is + or -.

Examples.

(The student should check by drawing figures.)

1. 680 -
(7 X 90) = 50. sin 680 = - cos 50;

tan 680 = - cot 50.

2. - 390 + (5 X 90) = 60. cos (- 390) = sin 60;
cot (-390)= -tan GO

.

22. EXERCISES 6

Express all the functions of the following angles in terms of functions

of acute angles:

1. 140. 6. 355. 9. - 318. 13. - 1040.
2. 155. 6. - 35. 10. 738. 14. - 410.
3. 235. 7. -115. 11. - 670. 16. 535.
4. 335. 8. -255. 12. 1120. 16. - 103.

Express all the functions of the following angles in terms of functions

of angles between and 45.

17. 75. 19. 110. 21. -335. 23. 790.
18. -80. 20. 255. 22. 600. 24. -510.

Give the exact values of the functions of:

26. 120. 29. - 30. 33. -240.
26. 135. 30. - 45. 34. 315.
27. 150. 31. - 60. 36. 600.
28. 300. 32. - 120. 36. - 510.

23. Relations between the functions of -f and - 0.

The figure is drawn for angle 6 in the first quadrant. Taking

equal distances on the terminal lines of + and - and drawing

the ordinates, we have two triangles with a common abscissa and

ordinates numerically equal but of opposite signs.

Comparing the trigonometric ratios of - with those of +
we see that



VERSED SINE, COVERSED SINE, HAVERSINE

sin (- 0) = - sin 0;

esc (- 0)
= - esc 0;

tan (- 0)
= - tan0;

cot (- 0)
= - cot0;

c s (- o)
= cos0;

sec (
-

0)
= sec 0.

RTLK. The cosine and secant re-

main unchanged when the sign of the

29

EX

FIG. 21

angle is changed; the other four functions change sign when the

sign of the angle is changed.

Exercise. Draw a figure and show that these equations are true when
is in the second quadrant; in the third quadrant; in the fourth quadrant.

24. EXERCISES 7

For the following angles draw figures to verify the rule of 23. Where

possible give the exact values of the functions.

1. - 4.V. 5. - 120. 9. - 103. 13. - 225.
2. - 30. 6. - 150

ri

. 10. - 35. 14. - 410.
3. - 60. 7. - 135. 11. - 255. 15. - 1040.
4. -90. 8. -115. 12. - 75. 16. - 318.

25. Versed sine, coversed sine, haversine.

The three expressions 1 cos 0, 1 sin 0, 1(1 cos 0)

occur often enough in the applications
K

of trigonometry to warrant the use of

special symbols for them. These are

1 - cos = versed sine of = vers 0;
H

1 sin 6 =*= coversed sine of = covers 0;

i(l cos 0)
= haversine of = hav 0.

In the figure, being an acute angle,

vers = MN because MN = ON - OM
and ON = 1

,
OM = cos 0. So vers tf represents the

of an arc above its chord in a unit circle.

22

rse

EXERCISES 8

Find the values of vers 0, covers and hav 6 for the following angles.

1. 30. 4. 90. 7. 150. 10. -225.
2. 45.
3. 60

6. 120.
6. 135.

8. - 30.
9. -120.

11. -300.
12. -315.



CHAPTER

RADIAN MEASURE.
APPLICATIONS.

USE OF TABLES OF
NATURAL FUNCTIONS,

26. Radian measure.

The degree is an artificial unit for the measurement of angles.

In France, where at the time of the Revolution an attempt was

made to put all measurements on the basis of the decimal scale,

the quadrant of the circle was divided into 100 equal parts and

the angle subtended at the center by one part was called a grade.

Each grade was then subdivided into 100 equal parts called

minutes, and each minute into 100 seconds. The degree and

the grade are thus two arbitrary units for the measurement of

angles, and any number of such units might be chosen.

In the artillery service a common unit of angle is the mil, so

chosen that 1600 mils make a quadrant of 90. This will be

discussed in Chapter VII.

There is one unit which is naturally related to the circle, and

which is as commonly used in theory as the degree in practice.

It is the central angle subtended by an arc equal in length to the

radius of the circle, and is called a radian (figure).

Since the circumference contains the radius 2x times, the

entire central angle of 360 contains 2ir radians, i.e.,

2;r radians - 360.
30



RADIANS INTO DEGREES, AND CONVERSELY

Hence,
r

TT radians = 180;

radians = 90;

y radians = 45; and so on.
4

In dealing with angles

measured in radians it is cus-

tomary to omit specifying the

unit used; it is understood

that when no unit is indicated

the radian is implied. Thus,

2w = 360, TT = 180,
*
= 60, 2| = 1\ radians, and so on.

31

NOT?:. To get the standard form of the graphs of the equations y = sin x,

y = cos ar, etc., take x in radians on the x-axis, thus: x = 0.1, 0.2, 0.3, . . .,

1, ... and find the corresponding values of ?/; use the same unit of length
for both x and y.

27. Radians into degrees, and conversely.

Since 2* (radians) = 360,

180.
, ,

.. 360 180
therefore, 1 radian =

-^
=

ZTT TT 3.1416- 57.34-;

also, 1 degree = ^~ (radians) = y^ (radians)

1

57.3+
(radians) = 0.017+ (radians).

RULE : To convert radians into degrees, multiply the number of
i on

radians by or 57.3+.

To convert degrees into radians
y multiply the number of degrees

By taking a sufficiently accurate value of TT, we find,
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1 radian = 57.2957795 = 3437.74677' = 206264.8".

1 = 0.0174533 radians.

1' = 0.0002909 radians (point, 3 ciphers, 3, approx.).

1" = 0.0000048 radians (point, 5 ciphers, 5, approx.).

The measure of an angle in radians is often called the circular

measure of the angle.

Examples.

1. Express 240 in radians.

240 = 240 X radians = ~~ radians.
loU o

2. Express in degrees the angle whose radian measure is 1 -f TT.

(1 + TT) radians =
(1 -f TT) X degrees = f h 180

J
degrees

= 57.3 +180 = 237.3+.

2
3. Express in degrees the angle whose circular measure is

~
ra-

dians.

We can sec that, since ?r = 3.14-h, the given fraction has a value a

little less than 1; hence the angle is a little less than one radian, hence

less than 57.3. Making the reduction we have

2 2 180
,

300 ,

radians = r X degrees = degrees
7T 1 7T 1 7T 7T 7T

O^A
degrees = 53.5.

6.73

See also Table V, Appendix.

28. EXERCISES 9

Express in degrees, minutes and seconds the angles whose radian meas-
ures are:

I JL, 5l, 5l, 5, ??5 4
!

-
T l l 2

12 3 16 5 15
'

4
"*" '

4 3 *' * - 3'

2. 2, 1.5, |, f, |.
5

7T 7T* TT^-1

3 *

12'
~

2' 15
+ 1f

3
~

3' ~~8

Reduce the following angles to circular measure:

6. 30, 120, 150, 225, - 60.
7. 375, - 22i, 187.5, 106, 93 45'.

8. 85, 191 15', 5 37' 30 ", 90 37' 30 '.

9. 10', 10 ". 0.1 ", 12 5' 4 ", 21 36' 8.1 *.
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29. Circular arc, sector, segment.

Let 6 be the radian measure of the central angle subtended by
an arc of length a in a circle of ra-

dius r.

(a) Now, in a given circle, arcs are

proportional to their central angles;

also, the whole circumference sub-

tends at the center an angle of 360

or 2ir radians. Therefore (Fig. 24)

arc AB a

circumference ZTT>- z?r pIG 24

Therefore a = rB.

The length of a circular arc equals the product of the radius times

the central angle (in radians).

(b) Also, in a given circle, the areas of sectors are proportional

to the central angles of the sectors. Therefore, if S = area of

sector ACS,

area of sector S 6

area of circle irr
2 2w

Therefore S =
|r

2
0.

The area of a circular sector equals the product of one half the

square of the radius times the central angle (in radians).

(c) In Fig. 24a WT

C have a segment ADBA of a circle cut off

by chord AB. Then

area of segment = area of sector area of triangle.

area of sector =
\r~6. (6 in radians.)

To find the area of A CAB, let BE be

drawn perpendicular to CA. Then

BE = r sin 6.

area of ACAB = base times altitude

= % r r sin 6 = % r2 sin 0.

Therefore
.

area of segment = | r2 - r2 sin

= Ar2
(0-sin0). FIG. 24a
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EXERCISES 10

1. In a circle of radius 12 inches a chord is drawn 6 inches from the

center. Calculate the length of the chord and of the arc and the area of

the segment.

2. Determine the area between a circumference of radius 10 inches and
a regular inscribed pentagon.

3. The area of a sector is 50 square inches and its central angle is 2

radians. Find the radius of the circle.

30. Angular and linear displacement; angular and linear speed.

When we say that a wheel rotates at the rate of 10 R.P.M.

(revolutions per minute) we mean that a given radius of the

wheel would turn through an angle of 10 x 360 or 3600 in one

minute if the rate of rotation remains constant during that

minute. For rate of rotation we commonly use the term angular

speed y
and designate it by the Greek letter omega, co.

When the rate of rotation, or angular speed, is 10 R.P.M.

we write

co = 10 R.P.M., or co = 10 rev. per min., or co = 10 rev./min.

This is equivalent to any of the following:

co = 60 X 10 rev. per hour = 600 rev./hr.

co =
jfa x 10 rev. per sec. = ^ rev. /sec.

co = 10 x 360 per min. = 3600 degr./min.

co = 10 x 2w rad. per min. = 20?r rad./min.

co = 60 degr./sec. co = -? rad./sec.
o

Then the same angular speed may be indicated by many
different numbers, depending on the unit of angle and the unit

of time.

The a'ngle through which a given radius of the wheel turns

in t units of time will be t x co. This is called the angular dis-

placement in time t; 6 = co.

Angular displacement = angular speed X time.

Examples.

If w = 30 degr./sec. and t = 10 sec., 6 ** 300.

If w rad./min. and t = 20 min., = 10*- radians.
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Suppose that we follow the motion of a point on the rim of

a wheel rotating with constant speed. Let P be the point, r

its distance from the center, o> the angular speed in radians per

unit of time, and 6 the angle in radians turned through in t

units of time.

If the wheel rotates through angle

in time t we have

6 = cot and rd = rut.

So we see that

rB = arc AP = linear displacement of

P in time t .

ro? = displacement of P in a unit of

time.

= linear speed of P.
FIG. 25

Example 1.

A wheel 4 feet in diameter is rotating with uniform angular speed

of T radians per second. What is the linear speed of a point on the

rim? How far will such a point travel in 10 seconds?

Here r = 2 feet, o> = TT rad./sec., t = 10 sec.

Linear speed of P = ro> = 2-n- ft./sec.

Linear displacement of P = rd = rut = 20* feet.

Example 2.

Suppose point P, Fig. 25, to be moving with uniform speed of 20

feet per second in a circle of radius 5 feet. What is its angular speed,

and what is its angular displacement in time t seconds ?

In t seconds P moves through an arc of 2Qt feet. Central angle
6 arc -f- radius = 4t radians.

But = wt. Therefore w = 4 radians per second.

Simple harmonic motion. As P moves uniformly around the circle

point Q, which is the foot of the perpendicular from P on BA (Fig.

25), moves back and forth along the diameter AB. Its distance from

is OQ = r cos = r cos ut.

Point Q will move slowly when 6 is near 0, it will increase its speed
as 6 becomes 90, and then diminish its speed as nears 180. This

cycle will be reversed as varies from 180 to 360.

DEFINITION. Point Q is said to have simple harmonic motion.
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31. EXERCISES 11

1. If is the degree measure of a central angle, show that

a = arc =
-^- X r x 9 and S = sector = -- x rz x B.

1oU oOU

2. If r = 100 inches, find the length of arc and area of sector (a) when
6 = 1 (radian), (b) When = 0.5. (c) When 6 - 1.5. (d) When 6 = 30.

(e) When = 75.

3. Find the central angle (a) when r = 100 and a = 25. (b) When
r = 100 and a = 125. (c) When r - 100 and S = 1000. (d) When r is 100

and S = 100. In each case give the value of 6 in radians and also in degrees.

4. Taking the radius of the earth as 3960 miles calculate the number
of feet in an arc of a meridian whose central angle is 1'. This is the nau-

tical mile.

Show that the nautical mile is about one seventh longer than the statute

or land mile.

6. In a circle of radius 100 inches a chord is drawn at a distance of

80 inches from the center. Find the length of the chord and of its subtended

arc. Find the area of the segment formed by this chord and its arc.

6. A cylindrical gasoline tank 12 feet long and 4 feet in diameter lies

on its side in a horizontal position. Measurement shows that the depth
of the gasoline at the center is 16 inches. How many gallons of gasoline
are there in the tank?

7. To a circle of radius 100 inches tangents are drawn at two points

separated by an arc 50 inches long. Find the angle between these tan-

gents.

In Fig. 24a the following quantities appear:

AC, AB, angle ACB, arc ADD, sector CADBC, triangle ABC, segment
ADBA.

8. Calculate each of the other quantities when A C = 50 and AB = 40.

9. As in Ex. 8 when AC = 50 and arc AB = 20.

10. How many radians are there in the central angle subtended by one

side of a regular inscribed decagon?

11. How many radians in the central angle subtended by an arc of 150

feet in a circle of radius 50 feet?

12. A wheel makes 1000 revolutions a minute. Find its angular speed
in radians per second.

13. How many revolutions per minute are equivalent to an angular

speed of 3?r rad./sec.?

14. What is the angular speed if a point on the rim of a wheel of radius

10 inches moves with a linear speed of 25 inches per second? Give the

answer in radians per second and also in revolutions per minute.

16. If a turbine wheel is 8 feet in diameter how fast would it have to

rotate to cause a point on the rim to move with the speed of sound in air

(1080 ft./sec.)?

16. In Example 2 of 30 calculate the length of OQ at intervals of

01 sec., from t = to t = 1.
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32. Use of tables of natural trigonometric functions.

Such tables give the values of the functions of angles from

to 90. But they will serve for all angles since any function of

any angle is reducible to a function of an acute angle.

Table III of the Appendix gives the values, to 4 decimal places,

of the six functions of angles from to 90, at intervals of 10'.

For intermediate angles we obtain the function values by

interpolation.

Such tables are used in two ways.

(a) Directly. Given the angle to find the numerical value of

one of its functions.

(b) Inversely. Given the numerical value of a function to find

the corresponding angles.

We shall illustrate the direct use of the tables by examples.

The tables give only four decimal places; therefore answers are

given only to four decimal places. Note that angles read down

on the left from to 45 and up on the right from 45 to 90.

The names of functions at the top of the page apply to the angles

at the left, those at the bottom of the page to the angles at the

right. Our examples will include angles from the various quad-

rants, including negative angles.

We use the principle of linear interpolation, that is, we assume

that, for sufficiently small changes in the angle, the change in the

function is proportional to the change in the angle. This principle

does not apply to some of the functions of angles near or

near 90.

1. sin 21 13' = ?

sin 21 10' = 0.3611

sin 21 20' = 0.3638
am '

~ U 'UIW '

sin 21 13' = 0.3611 + 0.3 (0.0027)
= 0.3619

2. cos 70 32' = ?

cos 70 30' - 0.3338 ,. n nno.

cos 70 40' = 0.3311
dlff -

= ~
- 27

cos 70 32' = 0.3338 - 0.2(0.0027)
= 0.3333
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3. tan 150 15' = ?

150 15' - 1 X 90 = 60 15'.

tan 150 15' = - cot 60 15'. (21)
cot 60 10' =0.5735 ,.

ff

cot 60 20' =0.5696
dlff '

~ " a 39

cot 60 15' = 0.5735 - .5(0.0039) - 0,5715.

tan 150 15' = - 0.5715.

4. tan (- 150 15')
= ?

- 150 15'+ 2 X 90 = 29 45'.

tan (- 150 15') = tan 29 45' = 0.5715. (21)

5. esc (- 400 43') = ?

- 400 43' + 5 X 90 = 49 17'.

esc (- 400 43') = - sec 49 17'. (21)
sec 49 10' = 1.5294

sec 49 20' =1.5346
dlff '

= a o2

Now we may add .7 of the difference to 1.5294 or subtract .3 of the

difference from 1.5346. The latter way is preferable. We get

sec 49 17' = 1.5346 - 0.0016 = 1.5330.

esc (-400 43')= - 1.5330.

Example 6.

y radians =
|
180 = 102 51.4'.

sec 102 51.4' = sec (90+ 12 51.4') = - esc 12 51.4' = - 4.5042.

Example 7.

4,p\ t ^w
1 =-

J
radians = 3 radians = radians

= 171 53.2' - 102 51.4' = 69 1.8'.

cos 69 1.8' = 0.3579.

NOTE. In these examples we have systematically followed Rules (a) and
(b) of 21. Other procedures may be followed. The angle - 150 15'

can be brought into the first quadrant by changing its sign (23) and
then reducing by 90 (21). That is, we go from - 150 15' to + 150 15',

then to 60 15'. To determine tan (- 150 15') we would have

tan (-150 15') - - tan (150 15') - cot 60 15'.
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33. EXERCISES 12

Determine the values of sine, tangent and secant of each of the following

angles. For Exercises 1-12 use a four-place table, for the rest use a five-

place table.

1. 32 25'. 8. -98 18'. 16. 61 53' 15".

2. 17 42'. 9. -122 25'. 16. -8 18' 40".

3. 61 53'.

4. 8 18'.

6. 122 25'.

8. -98 18'.

9. - 122 25'.

10. 287 42'.

11. 511 53'.

12. 548 18'.

13. 122 25.7'.

14. 17 42.3'.

21.

23. ~27T
ll'

24. 1 --

18. 7T ~ 1.

6. -17 42'. 13. 122 25.7'. 19. 2 + T.

7. 241 53'. 14. 17 42.3'. 20. 37r - 2.

34. All angles corresponding to a given value of a function.

We have here the problem of the inverse use of a table like

Table III, referred to in 33.

When a given value is assigned to one of the functions, as

sin 6 =
I, there will in general be two possible positions of the

terminal line, and only two. Exceptions occur when the terminal

position falls on one of the quadrant lines, when there may be

only one possible position. An angle whose terminal line falls

on a quadrant line we call a quadrantal angle.

These statements are illustrated in the figures below. In each

case we denote by 0i and 2 the two basic angles, that is, those

angles obtained by the least possible rotation from the initial

line OX.

Given :

150

sin = i.

30

sin V = - tan = 1.

-150

FIG. 26a

Quadrants: I or II.

0i = 30,Basic

angles: 2
- 150.

-30

FIG. 26b

III or IV.

01 =- 30,

2
- - 150.
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An illustration of an exceptional case is furnished by sin = 1.

Here there is only one possible position of the terminal line, with

basic angle 0i = 90.

To determine all the angles for which sin 6 = J we need merely

to write down expressions representing all angles coterminal with

the basic angles 30 and 150. These angles can differ from 30

or 150 only by an integral number of complete revolutions.

If n is an integer, positive or negative, any number of com-

plete revolutions can be expressed by n-360 or by n-2ir radians.

Therefore all solutions of the equation sin = are given

by = 30 + n - 360 or 150 + n 360
;

or by =
-g

4- 2mr or -7r+ 2nir.

Here n may be any integer, positive or negative, or 0; n =

gives the basic angles, 30 and 150.

In the same way all angles corresponding to sin = % are

given by = - 30 + n - 360 or - 150 + n - 360
;

or by = -
7; + 2tt7r or - -TT -f- 2nw.

All angles corresponding to sin = 1 are given by

= 90 + n-360; or by =
^ + 2nw.

Here there is only one basic angle, 0i = 90.

To determine all angles corresponding to the equation

esc =
2, we note that this equation is the same as sin = ^

and must have the same set of solutions which we have already

found for the latter equation.

RULE: All solutions of either of the equations

sin = k or esc = k f

may be obtained by finding the basic angles (or the basic angle) and

increasing each of the basic angles by n-360, or by 2nir (radians).

(NOTE. The basic angles will lie in adjacent quadrants, either I, II or

III, IV as in Figs. 26a, b. If k is not a possible value of the sine function,^
or k' of the cosecant function, there will be no solutions.)

Examples.

1. sin B = \ = 0.3333+ . By interpolation from Table III, the basic

angles, to the nearest minute, are 0i = 19 28' and 2
= 160 32'.
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Therefore all values of are given by
= 19 28' + n - 360 or 160 32' + n 360.

2. esc B = 3. From Table III we take the angles corresponding to

esc 6 = + 3 and change their signs as explained in 23. We obtain

ft = - 19 28' and 2
- - 100 32'. All values of are given by

e = - 19 28' + n 360 or - 160 32' + n - 360.

We next consider the equation cos =
fc, where k is any pos-

sible value of the cosine function, 1 ^ k ^ 1.

To illustrate, we use the equations below.

Given: cos0 = \\ cos 6 = -
f ; cos 9 = - 1.

120'

180

-60

FIG. 27a

-120

FIG. 27b FIG. 27c

Quadrants: I, IV; II, III;

Basic angles: + 60, - 60; + 120, - 120; 180.

All angles: 60 + n-360; 120 + n-360; 180 + n-360.

We see that the rule for finding all solutions of the equation

sin = k applies also to the equation cos = k and to the

equation sec = fc'.

The basic angles, when there are two, again lie in adjacent

quadrants; in quadrants I, IV if k is positive and in quadrants

II, III if k is negative.

The same rule applies to the equations tan = k and

cot = k'.

In these cases the basic angles lie in opposite quadrants unless

they are quadrantal angles; they lie in quadrants I, III if fc is

positive and in quadrants II, IV if k is negative.
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35. EXERCISES 13

Obtain all solutions of the following equations. Give exact values, or

to the nearest minute.

1 5. esc = 2. 11. cot0=-l.
V3.

6. csc0 =
-^|-

13 sin = 0.2991.

2. sin0 -- -77-' /- 14. sin -- 0.2991.
2 7.

V3. 8. sec = - 2. 16 CQt _ _ Q 6200

2 9- tan = 1. ^ sec , = _ L8979 .

4. cos 6 - 1. 10. tan - - V5. 18. esc 6 = 1.8979.

36. The inverse (unction notation.

It is often desirable to refer to an angle through the value of

one of its functions. If we know that tan a. = 2 we can say
" a is an angle whose tangent is 2." If a roadway rises 6 feet in

a horizontal distance of 100 feet, we can say that the road slopes

upward at an angle whose tangent is 0.06.

The statement "a is an angle whose tangent is 2 "
is repre-

sented in mathematical shorthand by one of the forms

a = arc tan 2 or a. = tan- 1 2.

Either of these is a short way of writing the quoted statement.

It should be noted that the symbol
"
tan~ l a "

is not the same

88 (tan a)
" =

teh;-

The symbols are read

" arc tangent 2 " or " inverse tangent 2 "

respectively. Either one represents the whole set of angles

satisfying the equation tan a = 2.

In general, in place of

tan a = a we write a. = arc tan a or a = tan~l

a;

sin a = a " " a = arc sin a or a = sin"1

a;

sec a. = a " " a = arc sec a or a. = sec" 1

a;

and corresponding equations for the other functions.

As we have seen, there is an unlimited number of such angles,

consisting of the two basic angles (or the one basic angle) and all

angles coterminal with them.

For definiteness, we single out one angle of this whole set and

call it the principal angle.
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DEFINITION. The principal angle corresponding to a given

value of a trigonometric function is the numerically smaller one of

the two basic angles when these angles are unequal.

When the basic angles are numerically equal but of opposite sign,

the principal angle is the positive basic angle.

The basic angles are numerically equal for the inverse func-

tions arc cos a and arc sec a. They are unequal for the other

four inverse functions.

Basic angles Princ. angle

Examples.

Inverse Junction

a arc sin \ ;

OL - arc tan (1);
a = arc sec (- 2);

a- cos' 1

0.7402;

Notation for the principal angle.

To indicate the principal angle we capitalize the first letter of

the symbol for the inverse function. Thus:

p.v. of arc sin a = Arc sin a; p.v. of sin" 1 a = Sin"1
a;

p.v. of arc tan a = Arc tan a; p.v. of tari" 1 a = Tan~ l a.

EXERCISES 14

State the basic angles and the principal angle,

when possible, otherwise to the nearest minute.

x/3 6. arc cot (-1).
1. arc sin

g sin" 1 (- 1
)

2. arc cos ( J). 7. tan' 1

(- 2).

_^ 8. arc sec 3.

v/3 9. cas- 1 0.25.
3. tair

Give exact answers

12. tair(f).
13. arc cos (- f ).

14. tan-i(f).

16. sec-'(-f).

4. sec" 1

T=-
V3

10. arc esc (- 2.5).

11. arc sin (f ).

State the exact value, or to the nearest minute.

16. Arc sin 0.3076.

17. Arc sin (- f ).

18. Sin~ 0.9498.

19. Arc cos (|).

20. Arc cos (- j).

21. Cos- 1 0.1570.

22. Arc tan 1.8000.

23. Tan-1
(-1.8000).

24. Arc cot 2.

26. Cot-1
(0.5400).

26. Arc sec 2.0500.

27. Sec'K-l).
28. Arc sec (- 1).

29. Arc esc 1.2150.

30. Csc-^-f).
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37. Variations of the problems discussed in 34.

Example 1.

Obtain all solutions of the equation sin 2x \.

Solution. Let 6 = 2x. We have to solve sin =
. All solutions

are given by
6 = 7i -360 -30 and = n-360 - 150.

2z = n 360 - 30 and 2x = n 360 - 150.

Therefore x =n-180-15 and 3 =n-180- 75.

Let the student examine these values of angle x when n =
0, n =

1,

n =
2, 7i=3, n=4.

Example 2.

Obtain all solutions of the equation tan 3:r = 1.

Solution. Let = 3x. We have to solve tan 0=1.
Therefore = n 360 + 45 and = n 360 - 135

;

3x = n-360 + 45 arid 3x = w-360 - 135;
s = n 120 + 15 and x = n 120 - 45.

Examine these answers when n =
0, 1, 2, 3, 4. Check some

of them by substituting in the original equation.

Example 3.

Solve: tan (3x - 60) = 1.

Solution. Let = 3x - 60. As in Example 2,

= n 360 + 45 and = n 360 - 135.

3z-60 = n-3GO+45 and 3* - 60 = n-360 - 135.

3x = n-360+ 105 and 3x = n-360 - 75.

x = n- 120 4-35 and x = n-120 - 25.

Check some of these answers.

Example 4.

Solve: sec (fz
- 30) = - 3.

Solution. Let = \x
- 30. Solve sec = - 3.

Basic angles: 0i = 109 28' and 2
= - 109 28 ;

.

All values of 0:

= n-360+ 109 28' and = n-360 - 109 28'.

^x - 30 = n -360 + 109 28' and \x - 30 = n -360 - 109 28'.

\x = n-360+ 139 28' and \x = n-360 - 79 28'.

z=n-144+ 55 47' and x = 71-144- 31 47'.

Check some of these answers.

To illustrate the use of the inverse function notation we again

solve Examples 3 and 4.
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Example 3.

Solve: tan (3x
- 60) = 1.

Solution. 3x 60 = arc tan 1.

3x = arc tan 1 + 60.

x =
I arc tan 1 + 20.

We can now insert the values of arc tan 1 or leave the answer as it

stands.

Example 4.

Solve: sec (|x
- 30) = - 3.

Solution. fx
- 30 = sec~ l

(- 3).

fx = sec'1
(- 3) + 30.

x =
1 sec-1

(- 3) + 12.

EXERCISE 15

Obtain all solutions of the following equations.

1. sin (2x - 30) = i 6. sec (8x + 40) = - 2.

6. cot (f + 15) = 2.
2. sin (3jc + 60) = J_

V2

3. cos (5x - 120) = - -

^

4. tan (jx + 30) = - 1.

7. cos (|/? -20) =0.2991.

8. tan (|/3 + 30) = -0.6200.

9. sec(4<* + 80) = -l.

10. cot (80 -
4<x)

= 0.

38. Given one (unction of an angle, to find the other (unctions.

Example 1.

sin x =
J. Find the other functions.

Take ordinate = 1 and distance =
2; then abscissa = V5 (figure).

Then

V3
tnn T = 4- -

V3

2

cos x
x
tan x =

cot x = v3, sec x =
V5

csc x = 2.

We have found two values for
FIG. 28

each function except csc x, which is

the reciprocal of the given function. Similar results will be found in

general. Note that the basic angles have the terminal lines shown in

the figure.
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Example 2.

3 / - 3 + 3\
an *~

""4 \ "+4
r

^l/
The two possible positions of the

terminal line are shown in the

figure.

Hence sin x - f ,
cos x = T f,

cot x -
|, esc x = f ,

sec x = + f .

Example 3.

Then (figure),

3 2
sm # = ~r=, cos x

tan x - f ,

esc x =
:

^ V13
,

sec x = ~

sin x - T*
K

FIG. 29

Fio. 30

Example 4.

Ordinate = h; distance = k\ hence abscissa = V&2 -
/i

2
.

Then cos x =
-, tan x =

=, etc.

39. EXERCISES 16

Find the other functions, given that

16. State for what values, if any, of the literal quantities in exercises

10-15, the given equations are impossible.
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40. To express all the (unctions in terms of one of them.

1. Express all the functions in terms of the cosine.

We have

_ cosx _ abscissa
COS X = : =

,. .

1 distance

Hence let abscissa = cos x and distance = 1.

Then ordinate = Vdist. 2 - absc. 2 = Vl - cos2 x.

The figure shows this graphically when cos x is positive.

FIG. 31

Taking into account both values of the ordinate, we have

Vl - cos2 x

sinx = Vl - cos2
a:;

tan x =

cotx =

cosx

cos a:

esc x =

Vl - c

sec x =

vl - cos2 x

1

COS X

Exercise L Draw a figure for the case when cos x is negative.

Exercise 2. Obtain the same equations directly from the formulas of

Group A.
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2. Express all the functions in terms of the cotangent,

cot x - cot x abscissa
cotx =

1 1 ordinate

Hence let abscissa = cotx and ordinate = 1.

or let abscissa = - cot x and ordinate = - 1.

In either case, distance = + Vl + cot2
x. (See figure, where we

assume cotx>0.)

Hence sin x =
7

: .-=,

vl + cot2 x

cot x
cos x = 7====-^=, etc.

Vi + cot2 x'

EXERCISES 17

1. By taking each of the functions in turn, and proceeding as above,
obtain the results shown in the following table. The given function and
its reciprocal are uniquely determined; the other four functions are am-

biguous in sign.
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2. Express cos2 x - sin2 x in terms of tan x.

3. Express cot x esc x + esc2 x in terms of sin x.

4. Express sin2 x tan x in terms of cot x.

6. Express -, .- \- -. r- in terms of esc 0.
1

1 4- sin 1 - sin 8

T , cos 6 . c
6. Express in terms of sec B.*

1 - tan

41 . Trigonometric equations.

A trigonometric equation is an equation which involves one or

more trigonometric functions of one or more angles and which

is not an identity. Thus:

sin2 x -f cos x =
1; tan 6 -f sec = 3; cot a esc a = 2.

To find the values of the angle which satisfy such an equation,

it is usually best to use a method adapted to the case in hand.

We give here one general rule, which covers a considerable

variety of cases.

RULE: To solve a trigonometric equation, express all its terms

by ?neans of a single function of the unknown angle; solve as an

algebraic equation, considering this function as unknown; find the

angles corresponding to the values of the function so obtained.

Check all answers by substitution.

In this reduction we usually shall need one or more of the

identities of Group A.

Example 1.

tan2 x -f tan .r = 2. Solve for x.

This is a quadratic equation* with tan x as the unknown.

Let i)
= tan J.

if+y = 2; if +u -2 = 0; (y
- l)(y+2) = 0.

Therefore y =1 or ?/
= 2; tan x = 1 or tanx = 2.

tan x = 1: j = tair 1
1 = 45 -f n -3(K) or - 135 -h n-360.

tan x = - 2: x = tair 1

(- 2) - - 63 26' -f n- 360 or 116 34' +
N-360 .

* We recall the quadratic formula for use when one can not factor by
inspection.

T f 2 r n *v -& V62 - 4ac
If en/

2 + by + c =
0, then y
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Check. All these angles check because for the first set tan x = 1 and

for the second set tan x = - 2. Both of these values of tan x check in

the original equation.

Example 2.

sin2 -f- cos z = l.

Substitute sin2 x = 1 cos2 x; 1 cos2 x 4- cos x =
1;

cos2 x cos x =
0; cos .r (cos # 1)

= 0.

Therefore cos x = or cos x = 1.

cos x = 0: x = arc cos = 2+ 2ri7r or
?> + 2n7r.

cos x = 1 :
= arc cos 1 = 0+ 2nir = 2n?r.

Check. For the first set of angles, cos x - and sin x = 1. For the

second set of angles, cos x = 1 and sin x = 0. All check.

Example 3.

tan 0-}- sec = 3.

Transpose and square :

sec = 3 - tan 0; sec2 = 9 - 6 tan + tan2
0.

Substitute sec2 = 1 -f- tan2 and collect terms:

6 tan = 8; tan =
^.

= arc tan f = 53 8' + n-360 or - 126 52' + n-360.

Check. The process of squaring the members of an equation usually

introduces extraneous solutions. Thus: 2x - 1 has one solution;

4x2 = 1 has two solutions. In our example the angles of the second

set, 126 52' -f 2nir do not satisfy the given equation. For these

angles tan = $ and sec = -
|.

Example 4.

2 cos -H sin = 2.

Transpose and square:

2 cos = 2 sin 0; 4 cos2 = 4 4 sin + sin2 0.

Substitute cos2 0=1 sin2 6 and simplify:

5 sin2 4 sin =
0; sin (5 sin 4) =

0;

sin = or sin = f = 0.8.

= arc sin = + n - 360 or 180 -f n 360.
= arc sin 0.8 = 53 8' + n 360 or 126 42' + n - 360.

Check. The values of which check are

= n - 360 and = 53 8'+ n 360.

The other values must be discarded.
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EXERCISES 18

Solve for the unknown angle.

11. 1 - tan2 a = 2 tan a.

12. 2 cos2 a - 2 sin2 a = V2.

13. tan a. - sec a = 3.

14. sec a = 1 H- tan a.

15. 2 sin + cos = 2.

16. sin - 2 cos = 2.

17. tan + 2 - 3 cot 0.

18. 2 sec - 3 + 2 cos 0.

19.

20.

3 sin x -f 4 cos x =

5 sin x 4- 4 cos x

o.

4.



CHAPTER

IV LOGARITHMIC
SOLUTION OF RIGHT

TRIANGLES.*
APPLICATIONS.

PART I. SOLUTION OF TRIANGLES

42. Remarks on numerical computations.

Suppose a given quantity has the exact numerical measure N.

This might be Ar
feet, N pounds, N bushels, and so on. Let

N = 20673, a 5-digit number.

To express this number with 4-digit accuracy, or, to 4 signifi-

cant digits, we keep the first three digits, 2, 0, 6, and round off

the 73 to 70. To express N to 3 significant digits, we keep the

first two digits, and round off 673 to 700.

(a) To four significant digits: N = 20670.

(b) To three
" "

: N = 20700.

We follow the same plan for decimal numbers. If N =

0.020673, then

(c) to four significant digits, N = 0.02067;

(d) to three
" " ,N = 0.0207.

But observe in this case ih^i final zeros following the decimal point

are omitted.

* For those who have not studied logarithms, a full discussion of the

theory and use of logarithms and of the use of tables is given in Appendix
B.

52
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The statements (a) and (b) without any more exact infor-

mation about N, mean respectively that:

the exact value of N lies between 20665 and 20675;
" " " " " 20650 and 20750.

Accuracy obtainable by the use of tables.

A theoretical study of this question is beyond the scope of this

book. We briefly summarize the results.

1. Tables of logarithms of numbers. In general, 4-place

tables of log N will yield N to not more than 4 significant digits;

5-place tables of log N will yield N to not more than 5 significant

digits.

2. Tables of natural or logarithmic trigonometric functions.

In general, 4-place tables will yield angles to the nearest minute,

and 5-place tables will yield angles to the nearest tenth of a

minute. Where the tabular differences are large, the accuracy

will be somewhat greater; where the tabular differences are

small, the accuracy will be less.

3. Interpolations should not be carried out more than one

place beyond the number of places in the table. Then round off

the result.

Examples.

1. From Table I, log 30.23 - 1.4800 + 0.3(.0014). But 0.3(.0014) =

0.00042 = 0.0004 (rounded off). Therefore log 30.23 = 1.4800 + 0.0004

= 1.4804. Here the digit 2 is not significant because 0.0014 is given

only to the fourth decimal place. We should do only as much work

as is necessary to get the nearest digit in the fourth decimal place.

2. From Table III, if cos s = 0.8650, x = 30 0'+ K(H)'). We
might calculate }2(10') = 7.14+'. But this is useless refinement be-

cause our 4-place table will yield angles only to the nearest minute. So

we divide out to get 7.1' and then shorten to 7'. Then .r = 30 7'.

As the student becomes familiar with the tables he will see

that, while the statements made above are true in general, at

some places in the table the accuracy is greater than that stated,

and much less at other places. For example, cos x = 0.9998

will not determine x to the nearest minute.
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43. Logarithmic solution of right triangles.

As explained in 13, the trigonometric functions are utilized

to solve right triangles. This problem may be conveniently dis-

cussed under four cases, according to the nature of the given

parts.

1. Given the hypotenuse and an acute

angle.

2. Given a side and an acute angle.

3. Given the hypotenuse and a side.

4. Given the two sides.

The formulas to be used are:

a

c
sin a = cos cos a

cot a = tan 8 =
a

b

FIG. 33
tan a = cot /3

= y
a + ft

= 90. c~ = a2 + 62
.

To calculate an unknown part when two parts of the triangle

are given select that equation which contains the unknown part

and the two given parts.

A modified form of the last equation is commonly used as a

check; its use in finding the unknown parts should be avoided.

Case 1. Given the hypotenuse and an angle, as c and a.

Formulas for calculating a, b, /3.

Angle 0: = 90 - a.

Side a: - = sin a; a = c sin a; log a
c

Side b: - = cos a; b - c cos a; log b
c

Check.

log c + log sin a.

log c + log cos a.

log 6 = J[log (c
-

a) -f- log (c -f a)].

a2 = c
2 -62 -

(c -6)(c + 6);

log a - [log (c
-

6) + log (c + 6)].

Use that check formula which contains the larger of the two

differences c .<- a, c - 6.
k
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Example 1.

Four-place tables.

Given c = 24.37, a = 32 12'. Find a, b, 0.

Angle 0. Side a. Side b.

= 90 - a log c = 1.3869 log c = 1.3869

= 67 48'. log sin a = 97266-10 log cos a = 9.9274-10

loga= 1.1135 log 6 = 1.3143

a = 12.99 b = 20.61

Check.

c-a= 11.38 log (c
-

a) = 1.0561 i sum = 1.3142

c -f- a = 37.36 log (c + a) = 1.5723 log 6 = 1 .3143.

sum = 2.6284

Example 2.

Five-place tables.

Given c = 24.373, a = 32 12.7'. Find a, 6, j3.

,4n0fe /3 Siete a Side b.

p = 90 - a. log c = 1.38691 log c = 1.38691

= 67 47.3
r

. log sin a = 9.72677- 10 log cos a = 9.92741 - 10

loga= 1.11368 log 6= 1.31432

a = 12.992 b = 20.621

Check.

c - a = 11.381 log (c
-

a) = 1.05618 | sum = 1.31432.

c + a = 37.365 log (c -f a) = 1.57246 log 6 = 1.31432.

sum = 2.62864

Case 2. Given a side and an angle, as a and a.

Formulas for calculating 6, c, 0.

Angle 0: = 90 - a.

Side b: - = cot a; 6 = a cot a;
a

log 6 = log a -f log cot a.

c 1 a

a sin a sin a

log c = log a log sin a.

Check. As in Case 1.
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Example 1.

Four-place tables.

Given a = 27.32, a = 37 33'. Find b, c, 0.

Angle ft. Side b. Hyp. c.

ft
= 90 - a. log a = 1.4365 log a = 1.4365

= 52 27'. log cot a = 0.1142 log sin a = 9.7849 - 10

log b = 1.5507 log c = 1.6516

b = 35.53. c = 44.83.

Check.

c - a = 17.51 log (c
- a) - 1.2432 i sum = 1.5507

c f a = 72.15 log (c + a) = 1.8582 log 6 = 1.5507.

sum = 3.1014

Example 2.

Five-place tables.

Given a = 27.326, a = 37 33.8'. Find b, c, ft.

Angle ft. Side b. Hyp, c .

ft
= 90 - a log a = 1.43658 log a = 1.43658
= 52 26.2'. log cot a = 0.11402 log sin a = 9.78507-10

log b = 1.55060 log c = 1.65151

b = 35.530. c = 44.824.

Check.

c - a - 17.498 log (c
-

a) = 1.24299 J sum = 1.55061

c 4- a = 72.150 log (c + a) = 1.85824 log b = 1.55060

sum = 3.10123

Case 3. Given the hypotenuse and a side, as c and a.

Formulas for calculating 6, a, 0.

/Irjgfr a: sin a = -; log sin a = log a -
log c.

c

4-w0fe 13:
= 90 - a.

Sfde 6: & = c cos a; log & = log c + log cos a.

Check. As before.

A form for the computations may now be made out as in pre-

ceding examples.
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Case 4. Given the two sides, a and b.

Formulas for finding c, a, /3.

Angle a: tan a =
-r; log tan a = log a -

log b.

Angle $: = 90 - a.

//?/p. c: c = -.
; log c = log a log sin a.

ft] II CX,

Check. As before.

Solution of oblique triangles by mean of right triangles.

In the oblique plane triangle ABC we designate the angles at

A
, B, C respectively by a, ft 7 and the opposite sides by a, 6, c.

Example 1.

Given 6 = 12.55, c = 20.63, a = 27 24'.

Determine a, 0, 7. ----
A D B

Draw CD perpendicular to AB and let AD = m. (Figure.) In right

triangle CDA we know b and and can solve for m and p. Then in

right triangle CDB we have p and c m and can soU'e for a and .

Finally 7= 180- (+0).

Formulas. Check.

A r7)/l : m = b cos <*; p = 6 sin <*. p = ?N tan

A C/)#: tan = p/(c
- m); a = p/sin 0. (c

- m) 2 = (a -f

.

log 6 = 1.0086-10 log 6 = 1.0986-10 log m = 1.0469

log; cos a = 9.948:MO log sin a = 9.6630-10 log tan a = 9.7146-10

log m = 1.0469

m = 11.14

c - m = 9.49

log p = 0.7616

log (c
- m) = 0.9773

log tan - 9.7843-10 log a = 1.0458 log (a+p) = 1.2274

log (a p) = 0.7275

= 31 19' a = 11.11. sum = 1.9549

a - 27 24' } sum = 0.9774

sum 58 43' 7 = 180 - 58 43' = 121 17'. (ch.)
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Example 2.

Given a = 351.2, a - 28 20', ft
= 35 45'. Find

6, c, 7-

Draw CD perpendicular to AB. (Figure.)

Formulas.

A CDB: BD = a cos ft\ p = a sin /?.

A CDA : 6 = p/sin ;
AD = p cot a.

c = D + DA; 7 = 180- (a+ ft).

The numerical solution is left as an exercise for the student.

44. EXERCISES 19

In Exercises 1-24 solve by 4-place logarithmic tables, including the

check. In each case give answers to the limit of accuracy obtainable by
the tables. Where the tabular differences are small, say less than 20, prac-
tice making interpolations mentally, without reference to the table of pro-

portional parts.

1. c = 57.56;
2. 6 =24.61;
3. c = 2738;
4. a = 2344;
6. a = 1507;
6. c = 3058;
7. b = .4332;

8. c = .1179;
9. a = 3157;

10. b 2352;
11. 6 - .0267;

12. c = .0913;

a - 64 41'.

- 25 19'.

ft
= 31 7'.

a = 58 53'.

a = 29 31'.

= 60 29'.

ft =21 33'.

a - 68 27'.

ft =36 41'.

a - 53 19'.

a - 73 0'.

ft
- 17 0'.

In Exercises 25-40 use 5-place tables.

25. a - 23.646; a - 39 0.8'. 33. 6 = 420.72; a - 29 8.2'.

26. 6 = 163.15; a = 58 35.3'. 34. b - 2081.5; a - 6832.4.

27. c - 19124; ft
= 48 9.3'. 36. a - 32.567; b - 26.873.

28. c = 37.562; ft
- 50 59.2'. 36. c = 43205; a - 41 31.3'.

29. a - 267.15; ft
- 31 24.7'. 37. c - 42.223; ft

- 39 31.7'.

30. b - .30854; c - .49267. 38. a - 12000; 6 = 1500.

31. c - 481.67; a - 234.52. 39. 6 - 32347; c - 43205.

32. a = .38408; ft
- 38 46.6'. 40. c = 120.65; ft

- 7 5.5'.

Oblique plane triangles. Solve for the three parts not given. Use 4-place
tables.

41. b - 177; c = 217; - 60.
42. a = 120; 6 - 210; 7 - 58 50'.

43. a - 160; c - 236; ft
~ 56 46'.

44. a - 800; = 60; ft
- 50.

46. c - 180; OL - 34 45'; ft
- 86 25'.
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FIG. 34

PART II. PROBLEMS IN HEIGHTS AND DISTANCES

45. Angle of elevation/ angle of depression.

Let be a point from which the line of sight to a point A is

elevated through an angle a, and

the line of sight to point B is de-

pressed through an angle 0, both

angles measured from the hori-

zontal line OH.

Angle a is the angle of elevation

of line 0.4, or of point A.

Angle /3 is the angle of depres-

sion of line OB, or of point B.

Let CB be drawn parallel to

OH and let h = CO be the height of point above C.

If h, a, ft are given, the lengths of all the lines in the figure can

be calculated.

EXERCISES

1. Obtain the following equations:

AOCB: CB h cot 0; OB =/icsc/3.

A 07/5: OH = CB; BH = h.

A OHA : OH =CB-h cot 0;
HA = OH tan * /i cot tan a;
OA O// sec a = h cot sec a.

2. Calculate the values of these quantities when
h = 250 feet; a 35; - 25.

46. Width of a river.

To determine the width of a river, w = AB, a surveyor might

set his transit at .4, sight across to

a well marked point J5, turn off 90

into the line AC, and have a stake

set at some convenient point C.

Measure AC = m, and from C meas-

ure Z ACB = a.

Then from A ABC we have

m

FIG. 35

W = tan a. or,m to = m tan a.
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EXERCISES

Calculate w when

(a)

m = 227 ft.

a = 51 43'.

129.5 ft.

31 26'.

(c)

663 ft.

42 17'.

(rf)

387 ft,

19 33'.

NOTE. Logarithms should be used in these calculations. Check results

roughly by measurement of figures drawn to scale.

47. Height of an inaccessible object.

To find /i, the height of a hill, (Fig. 36), choose a point A
on level ground and measure Z CAD = a, called

"
the angle of

elevation." Then approach a measured distance m on level

ground, to 5; at B measure the angle of elevation 0. Now a,

0, and m are known; to calculate h.

First Solution.

Then T = cot /3, and

B n

FIG. 36

Let BC = n.

m + n
,

cot

m
Subtracting: T = cot a - cot 0; hence h = -

n cot a cot p

Second Solution. Let k be the length of the perpendicular

from B on AD. Then we can calculate, in order, first &, next

5D, and finally h.

From A ABE: k = m sin a.

fc sin a
From A BED: BD =

sin (0 a) sin (/3
-

a)

A = BD sin ft
= mFrom A

sin (0
- a)

For logarithmic calculation this formula is much better than

the preceding. It gives

log h = log m + log sin a -f log sin + colog sin (0
-

a).
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EXERCISES

1. What does the second solution give when - 2a? Explain.
2. Use both formulas to find h when

Draw figures to scale and give the graphic solutions.

48. Height of an inaccessible object. Second method.

Let CD stand perpendicular to the horizontal plane MN.
To determine the height CD or h.

From A measure / a; if now we cannot approach C or recede

from it on account of obstacles such as trees, or a river, or other

barrier, lay off a measured distance AB = m, at right angles to

AC; at B measure Z /3.

FIG. 37

Given m, , j3; to calculate /*.

Solution. Let 7 = Z ACS. cos 7 = AC -5- C.

But ;1C = A cot a; BC = /i cot 0.

cot a
cos 7 = --,

cot (3

from which 7 may be found.

Knowing Z 7 and m, we can calculate either AC or fiC, and

then h. Thus:

AC = ??i cot 7; h = AC tan a = 771 cot 7 tan a.

Our scheme for logarithmic calculation would be:

log cos 7 = log cot a -
log cot 0; 7 =?

log A = log m -}- log cot 7 + log tan a; h ==?
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EXERCISES

1. Calculate h when m - 1575 feet; - 32; ft
- 19.

2. Calculate h when m - 236.7 feet; a - 58 16'; ft
- 40 34'.

49. EXERCISES SO

1. A building 212 feet high casts a shadow 683 feet long. Find the

angle of elevation of the sun.

2. If an airplane glides downward at an angle of 15 with the hori-

zontal, how many feet will it descend while traveling a distance of 20,000
feet?

3. The Leaning Tower of Pisa is 179 feet high and is out of plumb
16.5 feet. At what angle does it lean from the vertical?

4. A pole 17.25 feet long casts a shadow on level ground 25.75 feet

long. What is the angle of elevation of the sun?

6. From a battery at the top of a cliff 1537 feet above sea level the

angle of depression of a ship is 15 10'. Find the horizontal distance to

the ship.

6. A level road makes an angle of 5 with the horizontal. How many
feet will an automobile rise in traveling 5 miles along the road?

7. Two towers stand on level ground and are 2537 feet apart. From
a point on the ground midway between the towers the angle of elevation

of one tower is 17 35' and of the other tower 24 48'. Find the height
of each tower.

8. From a point on level ground 340.3 feet from the foot of a towor
the angle of elevation of the top of the tower is 21 16'. Find the height
of the tower.

9. If a flag pole 15 feet high surmounts the tower of Exercise 8, find

the angle of elevation of the top of the flag pole from the same point that

is used in that exercise.

10. Two sides of a parallelogram are 55.23 feet and 41.88 feet long

respectively and their included angle is 11 5 37.2'. Find the altitude

drawn to the longer side. Find the area of the parallelogram.

11. The hypotenuse of a right triangle is 500 feet long and one of its

acute angles is 28 32'. Show that the perpendicular from the vertex of

the right angle to the hypotenuse is 2Q9.83 feet.

12. If in Exercise 11 the hypotenuse is c and the angle is <*, show that

the perpendicular is c sin a. cos a.

13. Calculate the perimeter and area of a regular decagon circumscribed

about a circle whose radius is 124.5 inches.

14. The equatorial radius of the earth being taken as 3956 miles, find

the radius and the circumference of the 40th parallel latitude. Find the

radius of the arctic circle.

15. From a point in the same horizontal plane with the foot of a tower
the angle of elevation of its top is 11 29'. From a point 100 ft. nearer

to the foot of the tower the angle is 13 18'. Find the height of the tower.

Am. 144.5 ft.
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16. From one bank of a river the angle of elevation of the top of a tree

on the opposite bank is 40 22'. On moving back 120 ft., the angle of

elevation is 29 37'. Find the height of the tree and the width of the

river.

17. At a certain point in the same horizontal plane with the foot of a

column 25 ft. high, the angle of elevation of its top is 50. What will be

the angle of elevation at a point 15 ft. farther away? Ans. 34 48'.

18. A column 75 ft. high stands on a pedestal 25 ft. high. From a

certain point on the ground in the same horizontal plane with the foot of

the pedestal, the latter subtends an angle of 15. What angle does the

column subtend at this point? Ans. 31 58.5'.

19. A vertical pole 30 ft. long, and standing on level ground, casts a
shadow 50 ft. long. What will be the length of the shadow when the sun

is 10 higher?

20. From a point on the bank of a river the angle of elevation of the

top of a tree on the opposite bank is 38 52'; from a point 200 ft. straight
back from the bank the angle of elevation is 19 26'. Find the height of

the tree and the width of the river. Also give graphic solution.

21. From a point A on level ground due south of an airplane, its angle
of elevation is 41 12'; from a point B 1000 feet due east of A, the angle
of elevation is 36 41'; how high is the airplane?



CHAPTER

V PROJECTION
OF LINE SEGMENTS.

VECTORS.
APPLICATIONS.

50. Projection of line segments.

Let PQ be a segment of a straight line and let AB be another

straight line. The projection of segment PQ on line AB is the

segment MN of line AB contained between the feet of the

perpendiculars dropped from P and Q on AB. (Fig. 38.)

Along line HK we shall regard the direction from P toward Q
as positive. Along line AB either direction may be chosen as

positive. We choose it in the direction from A toward B.

Positive directions may be conveniently indicated by arrows.

HL-

The angle between segment PQ and line AB will be taken as

the angle between their positive directions, measured counter-

clockwise from AB as initial line and with PQ (or PQ produced)

as terminal line. Designate this angle by 6.

In Fig. 39 PR is drawn parallel to A B and 9 = angle #PQ. In

Fig. 40 PT is drawn parallel toAB and = angle TPQ, an obtuse

angle. Line PT produced to the left to meet NQ determines

PR.
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Let I be a positive number which measures the length of seg-

ment PQ. Then we have the formula

(/) MN = / cos 6 = projection of PQ on AB.

Analysis of this formula.

In Fig. 39, from A RPQ, PR = I cos 6. Angle is in the first

quadrant, cos is -f ,
I is -f ,

therefore PR comes out -f. The
arrow on PR points in the positive direction of AB. Also

MN = PR and is positive.

Let segment PQ rotate about P until 6 = 90. Then 7? coin-

cides with P and N with M. PR = and A/N = 0. The
formula gives MN = I cos 90 = 0.

When 6 passes 90, cos becomes negative, as do PR and MAr
.

(Fig. 40) When = 180, MV = I cos 180 = - I In the third

quadrant cos 0, PR and MN remain negative; in the fourth

quadrant all are positive.

Therefore our formula gives the projection of PQ on AB both

as to length and sign.

Y,

F

A N M

FIG. 40

B M N X

FIG. 41

In later work we shall need to project a given line segment on

each of two mutually perpendicular lines.

Let these lines be OX and OY (Fig. 41) with positive direc-

tions as shown by the arrows. Let PQ be a given segment,

making angle with OX.

Let MN be the projection of PQ on OX and EF its projection

on OF. Then

(1) projection of PQ on OX = MN = I cos 0;

(2) projection of PQ on OY - EF = I sin 0.
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Analysis of equation (2).

The figure shows 6 to be an acute angle and A PRQ gives

I cos = PR = MN.
I sin = RQ = PT = #P.

These are equations (1) and (2) for angle 6 acute. We Have al-

ready shown that (1) remains true when 6 varies from to 360.

In exactly the same way we can show that equation (2) is true

for all values of 6. This is left as an exercise for the student.

EXERCISES 21

Calculate the projections of PQ on OX and OF:

1. PQ = 100; 6 = 0, 30, 45, 60, 90, 150, 240, 270, 300.

7T 7T 7T 2?T Q"7T 14jT

^ "
'

=
B' 9' 7' IT y ~T

3. PQ = 356.2; = 40 15'; B = 205 23', 6 = - 40 15
;
.

4. PQ - 0.036825; 9 = 130 45.3'; = - 130 45.3'.

51. Vectors and their components.

DEFINITIONS.

4 vector is a directed line segment.

In Fig. 42, PQ is a vector, P is its initial point and Q is its

terminal point or em/ point.

Through initial point P draw

a line in any desired direction

and project PQ on that line.

This projection of PQ is the

component of vector PQ in the de-

x sired direction.

If two mutually perpendicular

reference lines OX and OF be chosen, and lines parallel to them

be drawn through P, the projections of PQ on these lines are PR
and PT respectively. Then

PR is the x-component of vector PQ ;

PT is the y-component of vector PQ.
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Then for all values of 6 we have (50)

(1). x-component of vector PQ = PR = I cos 0;

(2). y-component of vector PQ = PT = / sm 0.

Also:

(3). length of vector: Z
2 = PR2 + PT = sum of squares of

components.

RQ PT _ y-component_ =(4). angle of vector: tan 6 =
PR PR x-component

NOTE. Point may be taken at P, the initial point of the

vector PQ; then OX falls on PR and OY on PT. This is done

in the following section.

52. Sum of vectors. Parallelogram law. Resultant.

Problem. An airplane flies 125 miles in the direction E 34 N,

then 150 miles in the direction E 62 N. How far and in what

direction is the plane from its starting point?

The data are shown in Fig. 43. Vector AB has Zi
= 125,

0i = 34; vector BC has k - 150, 2
= 62.

Required: I and for vector AC.

Calculate:

AH = x-comp. of vector AB =
li cos 0i = 103.6 mi.

BL = x-comp. of vector BC = Z2 cos 2
= 70.4 mi.

AK = x-comp. of vector AC = AH -h HK - 174.0 mi.

Similarly:

KC = KL + LC = HB + LC = 69.9 + 132.4 = 202.3 mi.
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Knowing the components of vector AC we find I and 9 by

(3) and (4) of 51.

Exercise. Show that I = 266.9 miles; =49 18'.

Sum of two vectors. In Fig. 43 vector AC is called the sum of

vectors AB and BC. As an equation we write vector AC = vector

AB -f vector BC. When two vectors are added the final point of

the first vector is taken as the initial point of the second vector.

Resultant of two vectors. In Fig. 43 AB /
is drawn parallel to

and equal to vector BC. Then the components of AB', regarded

as a vector with initial point A, will be equal in length and

direction to the components of vector BC. Therefore the com-

ponents of vector AC may be obtained by adding the corre-

sponding components of vectors AB and AB'. Vector AC is

called the resultant of vectors AB and AB' .

Vector AC is the sum of vectors AB and BC, which are placed

end to end; it is the resultant of vectors AB and AB' which start

from the same initial point.

Parallelogram law. Vector AC is the diagonal of a parallelo-

gram constructed on AB and BC, or on AB and AB', as sides.

This is known as the parallelogram law.

In the following exercises a vector is indicated by the symbol

(I, 6), where I is the length of the vector and 6 is the angle wrhich

it makes with a selected initial line.

EXERCISES

Find the sum of each pair of vectors. Draw figures to scale.

1. (125, 34) and (50, 62). 5. (40, 240) and (60, 120).

2. (125, 34) and (150, 120). 6. (40, 240) and (60, 30).

3. (100, 60) and (50, 150). 7. (75, 300) and (80, 225).

4. (25, 145) and (40, 210). 8. (225, - 60) and (125, 90).
9. In these exercises would the answer be changed by reversing the

Order of the vectors?

10. How would the resultant of any pair of these vectors compare with

their sum?
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53. Velocities as vectors.

Suppose a ship to be moving at the rate of 20 knots an hour

in the direction E 40 N. See Fig. 44. Let A mark its position

at any moment and draw the directed line segment AB with

I = 20 and = 40, choosing a convenient scale for 1. Then AB
is a vector showing both the speed and the direction of motion

of the ship.

'40

A E

FIG. 44

NOTE. Velocity is commonly used to include both speed or rate of mo-

tion, and direction of motion.

As a second example consider an airplane flying at 200 miles

an hour in a direction S 60 W. The vector diagram is shown

in Fig. 45.

w 210,-

200^
^60

FIG. 45

In both figures we shall consider east and north as the positive

directions along the reference lines. Angle is to be counted

from the easterly direction as initial line. In Fig. 44, I = 20,

6 = 40.

The components of vector AB are:

Fig. 44: AE = 20 cos 40 = 15.32 knots per hour,

AN = 20 sin 40 = 12.86 knots per hour.

Fig. 45: AW = 200 cos 210 = - 173.2 m.p.h.

AS = 200 sin 210 = - 100.0 m.p.h.
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Note that, when the initial line points east:

components to the east or north are counted positive;

components to the west or south are counted negative.

Resultant of two velocities. Ground speed of airplane.

Problem. An airplane is traveling with an airspeed of 120

m.p.h. and heading E 50 N and the wind is blowing at 40

m.p.h. in direction N 20 W. Calculate the groundspeed and its

direction.

FIG. 46

(Airspeed = speed relative to the air. Groundspeed = speed rel-

ative to the ground.)

Starting from A, in one hour the engines would drive the plane

from A to B while the wind would carry the plane from A to C.

The plane follows the intermediate path AD and in one hour

arrives at D. Vector AD, the distance covered in one hour rela-

tive to the ground, is the groundspeed.

EXERCISES 22

1. As in 52, calculate I and for vector AD, taking eastward as 9 = 0.

Calculate the groundspeed and direction from the data below.
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54. Forces as vectors.

Suppose a particle at A to be pulled upon by several forces,

all in the same plane, as AFi, AF^ AFs, AF4 in the figure. Here

each force is represented by a vector, showing the amount and

direction of the pull.

What must be the amount and direction of a single force

FIG. 47

which is equivalent to the four given forces? This is called the

resultant of the given system of forces.

DEFINITION. The sum or resultant of any number of co-planar

forces is a force such that

its re-component = sum of x-components of the given forces;

its ^/-component = sum of ^-components of the given forces.

Solution. Resolve each force into an .r-component and a y-

component. This is done by the formulas

z-component =
| force) x cos a;

^/-component =
|force| x sin a:;

here
| force] denotes the magnitude of the force or the length of

the vector which represents the force, and a is the angle between

OX and AF, measured in the counter-clockwise direction. Thus

for AF*, a = 330 nearly.

Form the sum of the x-components, each with its proper sign,

for a
"

total rr-component." Similarly for the y-components.

Then

Amount of Resultant Force =

V(total x-comp.)
2 + (total ?/-comp.)

2
;

A i r TO iA x 77 x total ^/-component
Angle of Resultant Force: tan a =

-.

-

total ^-component
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EXERCISES 23

Calculate the resultant of each of the following systems of co-planar
forces acting at a point. Draw accurate figures.

1. (30 lb., 25); (40 lb., 50).
2. (25 lb., 40); (18 lb., 70); (35 lb., 160).
3. (75 lb., 65); (60 lb., 130); (85 lb., 230); (40 lb., 340).
4. Show that the resultant of two forces is represented by the diagonal

of a parallelogram whose sides represent the two forces. (The parallelo-

gram law.)

55. Plane surveying.

This subject furnishes further applications of the use of vec-

tors and their components.

Suppose a surveyor to start from A and run the following

lines:

Bearing Distance

AtoB, N 70 E, 345 feet;

BtoC, N25W, 288 feet;

C toD, S 72 W, 467 feet;

DtoE, S 12 W, 424 feet.

How far and in what direction is he now from his starting point?

FIG. 48

In the figure each line is represented by a vector of proper

length and direction. Scale: one division = 50 feet. We must

determine the length of AE and its direction.
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To do this we calculate the north-south component of each line

and add them algebraically to get the north-south component
of AE. These components are counted positive when the end

point of the line lies to the north of its initial point; otherwise

negative. The east-west components are treated similarly;

they are counted positive when the end point of the line lies to

the east of the initial point of the line.

DEFINITIONS. The angles of the lines are measured from the

north or the south, so that they will be acute angles. They are called

the
"
bearings

"
of the lines. The distance run, or length of the

vector, is called the
"
distance," and is assumed to lie in a horizontal

plane.

Also

the north-south component of a line is called its
"
latitude";

the east-west component of a line is called its
"
departure ".

Then we have

latitude of a line == (distance X cosine of bearing) ;

departure of a line = (distance X sine of bearing).

Also

latitude of AE = algebraic sum of latitudes of lines run;

departure of AE = algebraic sum of departures of lines run.

Distance AE = V(latitude of AE) 2 + (departure of

T r A r x A ET latitude of AE
Bearing of AE: tan sAE =

departure of AE

where the vertical bars mean that the enclosed quantity is to be

taken positively.

When a surveyor runs a closed traverse, starting at a given

point and ending at the same point, the sum of the latitudes of

all lines run should be zero, as also the sum of all the departures.

This furnishes a check on the accuracy of the measurements.

Exercises 2 and 3 below contain data from surveys of closed

traverses.
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Exercise 1. Calculate the latitude, departure, length and bearing of

AE from the data given above. A figure drawn to scale may be measured
to get approximate results.

Exercise 2. Check the computed latitudes and departures.

Line Bearing Distance Latitude Departure
(feet) N 8 E W

E-F S 644'E 279.15 277.21 32.73

F-V N5430'W 153.27 89.00 124.78

V-U S1622'W 120.17 115.29 91.25

U-M N2313'W 231.47 212.73 33.86

M-E N0721 / E 235.42 9O66 217.26

+ 392.39 -392.50 +249.99 -249.89

Error: -O.llft. Error: +0.10 ft.

Exercisers. Calculate the latitudes and departures.

56. Plane sailing.

The problem of plane sailing in navigation is essentially the

same as the problem in plane surveying just treated. The sur-

fafce of the ocean is considered as a plane.

DEFINITION. The angle between the direction in which a ship

is headed and the meridian passing through the ship's position is

called the course of the ship. When measured from the nearer

part of the meridian so as to be an acute angle, it corresponds ex-

actly to bearing in surveying. (See also 139).

Other elementary problems in navigation relate to the deter-

mination of the distance at which a ship, sailing a known course,

will pass an observed object such as a lighthouse.

The term "
bearing

" which occurs in the exercises below

means "
bearing off the bow," that is, the angle between the line

from ship to object and the direction in which the ship is

headed. When the bearing is 90 the object is "on the beam."
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B

FIG. 49a

EXERCISES 24

1. A ship loaves Boston Light and sails S 75 E, 25 miles; then N 70 E,
40 miles; then N 35 E, 60 miles. In what direction should she now sail

to return directly to the starting point? How far will she have to go?

2. A ship, sailing on track AB, is at A when the navigator observes

the bearing of a lighthouse L to be 45 off the port bow; that is, the angle
between the direction in which the ship is sailing and line AL is 45. At
what distance will the ship pass the lighthouse?
Am. The distance sailed while the bearing increases from 45 to 90.

3. A ship running on line AB is at A when the navigator observes the

bearing of a lighthouse L to be 26.5 off the

port bow. After a run of 5 miles the bearing
has increased to 45. Show that the distance

at which the lighthouse will be passed is 5 miles

very nearly. In general, if AB --=
?n, also BC -

M and CL =
in, very nearly.

4. In Exercise 3 if AB = BC = CL, then

tanR4L -
\. Why? How close is this to 26.5?

6. A ship is running on line AB at 18 knots per hour. At A the navi-

gator measures the bearing of lighthouse L to

be 25. Ten minutes later, at B, the bearing
is 50. How far is the ship from L at the

time of the second bearing? At what distance

will the ship pass the lighthouse?

6. Solve Exercise f> when angle CAL ~
<*,

angle CBL = 2, and distance 4 sailed AB = m.

This method of finding CL is known as the
"
double angle method/'

7. If, in the figure of Exercise 5, angle CAL = 30, and, 20 minutes

later, angle CBL 50, find CL.

8. If, in the figure of Exercise 5, angle CAL , angle CBL =
/j, v is

the speed of the ship in knots per hour and t the running time from A to B
in minutes, find CL.

9. If a landmark is observed 22 \ off the bow, and later 45 off the

bow, show that the mark will be passed at distance approximately equal

to seven tenths of the run of the ship between bearings. How accurate is

this "seven tenths rule"?

10. If the first bearing is 20, what must be the second bearing so that

the "distance passed
"

shall be one half the run of the ship between bear-

ings? Ans. 53 nearly.

11. A lighthouse tower rises 150 feet above sea level. There is shallow

water out to a distance of 5160 feet from the tower. A navigator from his

bridge 30 feet above sea level observes the angle of elevation of the light

to be 1 10'. How far out from the shoal is his ship?

B

FIG. 49b
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57. Simple waves.

The graph of the function

y = sin x

is a wave curve of the simplest type, as shown in the figure on

p. 19.

Such a curve may be altered in several ways without destroy-

ing its simple wave form. We may change

(a) the height of the crests, or amplitude of the wave;

(b) the length of the wave;

(c) the phase of the wave, depending on where it cuts the z-axis.

In this way we would get a wave like that in the following

figure, where the original sine wave is shown for comparison.

3r/2 2>r

Fia. 50

Full line, y

Amplitude

1.5 sin (3x
-

4).

OM = 1.5.

27T
Wave length = LN -~- radians.

o

Dotted line, y - sin x.

Amplitude 1.

Wave length = 2w radians.

Phase = OL = radians. Phase = 0.

The most general expression for the simple wave which results

when the above changes have been made in the wave for sin x is

y = k sin (ax + 6).
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Example.

y = 1.5 sin (3z 4). (See preceding figure.)

(a) The amplitude. The greatest value of sin (3x 4) is 1, since the

sine function cannot exceed this value; hence the greatest value of y is

1.5. This shows the height of the wave; that is,

amplitude = 1.5.

(b) The wave-length. This is determined by finding the points where

the wave crosses the z-axis. These are marked by the values of x for

which sin (3:r 4) = 0. But this is zero when the angle (3x 4) is an

integral multiple of TT;

sin (3x 4) = if 3x 4 = mr, or x = -
radians,

o

where m is any whole number.

Putting m 0, 1, 2, 3, . . .
,
we get the successive crossing points:

_ 4
. _ *-+4. _27r-f4. _ 3*-+ 4.

#0 oJ ^1 ~~
o J #2 o J ^3 o 5

e*C "

These values in degrees are, very nearly,

* = 76.4; xi = 136.4; x. = 196.4; xz
= 256.4; etc.

The distance between alternate crossing points, as xo to x 2 ,
is the

wave-length :

!
., 27T+4 4 27T ..

wave-length = x% x =
5 ^

=
-.y radians.

o o o

This is one-third of the wave-length of the fundamental sine wave.

(c) The phase. This marks the beginning of the first complete wave.

Hence

phase = Xo = OL =
I radians.

In general, for the wave y = k sin (ax+ 6),

amplitude =
k]

wave-length = radians;

phase = radians.

EXERCISES 25

Draw the following waves, showing each in comparison with y = sin x.

1. y - 2 sin (x - 1). 3. y - 2.5 sin (2x + 3).

2. y - 3 sin (2x -
3). 4. t/

- 4 sin (3x - 60).

5. Prove the statements made above regarding y - A: sin (ax -f 6).
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6. Draw the graph of e = 110 sin (2407rJ
-

TT).

This equation describes the rise and fall of the electromotive force at a
fixed point in an ideal alternating current circuit.

Here e and t take the place of y and x\ e stands for electromotive force

in volts, t for the time in seconds. Show that the greatest value of the

electromotive force is 110 volts, and that there will be 120 vibrations per
second.

In drawing the graph, use care in the choice of scales. Thus on cross-

section paper, one square of the vertical scale might be taken to represent
10 volts, and 10 squares of the horizontal scale might be taken to repre-
sent ilo seconds.

58. Simple harmonic motion.

Consider a point M to move on the circumference of a circle

of radius r; we see that, as M moves around the circle, its pro-

jection M f moves back and forth along AC.

When 6 =
0, M and M' are together at A. Then, if we sup-

pose 6 to increase uniformly, M will move around the circle with

uniform speed; but M' will move along AC with variable speed,

slowly at first, then faster until it reaches 0, when its speed will

be greatest, then more slowly until it reaches <?, where it will

come to rest and start back toward A. This type of motion is

called simple harmonic motion.

A body which has this motion vibrates back and forth past a

middle position with variable speed. The distance of the body
from its mid-position is called its displacement. From the figure,

displacement of Mf = d = OM' = r cos 6.
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When =
0, d reaches its greatest value r, which is called the

amplitude of the vibration.

If we measure 6 from some other fixed radius OA '

in place of

OA
,
we shall have

d = r cos (6 -f a).

The greatest value of d is now reached when 6 -f a =
0, or

when = a; this angle is called the p/iase of the vibration.

If we suppose the angular speed of the radius OM to be co

radians per second, and t to represent the time in seconds elapsed

since M was at A
,
then d =

ut, and

d = r cos (oo + a).

This is an equation of the type

y = k cos (ax -f 6),

and, like the equation

y = fc sin (ax -f 6),

is represented graphically by a simple wave curve.

EXERCISES 26

Describe the motion of point M' when d is as follows.

1. d = 2 cos t.

2. d = 3 cos 2t.

3. d = 5 cos vt.

4. d = 5 cos 2?rl

6. d = 10 cos (rf + 45).

6. d - 10 cos (27rf -f 45).



CHAPTER

VI SMALL ANGLES.
THE MIL UNIT.

APPLICATIONS.

59. Use of small angles.

Consider a chord PQ of a circle of radius r. Let the length of

the chord be small as compared with the radius of the circle.

Then the central angle, 0, subtended by the chord will be small

also.

FIG. 52

We shall study the explanation of such a result as is given in

the following problem.

Problem.

QP is a distant ship known to be 200 feet long. It subtends an angle

of 1 as seen from 0. How far away is the ship?

Arts. 57.3 X 200 = 11460 ft., very nearly.

Explanation. In 29(a) we have the relation between radius, arc,

and radian measure of the central angle:

(1) arcQP = rX0, or r = -XarcQP.
9

If angle 6 is small, arc QP will be nearly equal to chord PQ. Replacing

arc QP by chord QP we have the approximate relations

(2) chord QP = r X 0, or r = - X chord QP, approx.

80
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Taking = 1 = -
radians, and chord QP = 200 feet, we have

Ol .o

r - 57.3 X 200 = 11460 feet, approximately.

In the next section we shall see how to obtain an estimate of

the accuracy of this approximation. We shall find there that,

if we use chord PQ in place of arc PQ,

the error in r is about 25 feet per mile if 6 = 10;
the error in r is about 6.5 feet per mile if 6 = 5;
the error in r is about 1 foot per mile if 6 = 1.

The following special cases of (2) may be noted.

(3) 0=1 = -i-
radians; r = 57. 3 X chord QP, (approx.).

O/ .o

n 57 3
(4) 6 = n = -=-7* radians; r = - X chord QP, (approx.).o/ .o n

(5) e = l
; =

5-r-:^ radians; r = 3440 X chord QP, (approx.).

(6) 6 = n' = oTm radians; r =
l- X chord QP, (approx.).

Example.

A flagpole 12 feet long subtends at an angle of 2 30', point

being on a perpendicular bisector of the pole. How far is the pole

from 0?

Using formula (4) with e = 2 30' = 2.5, we have

r = ^| X 12 - 275.0 feet.
. o

Using formula (6) with 0=2 30' = 150', we have

r = ~?X 12 = 275.2 feet.
lOU

A right triangle solution with 5-place logarithms gives r = 275.04 feet.

EXERCISES 27

1. A chimney 40 feet high subtends an angle of 3. How far away is

the chimney?

2. A building 300 feet long viewed from a point at right angles to its

length subtends an angle of 1 45'. How far away is the building?

3. At what distance from the building in Ex. 2 would the subtended

angle be 2?
4. A lighthouse tower 40 feet high subtends at a ship an angle of 30'.

How far is the ship from the lighthouse?
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6. A textbook on navigation states that a certain light, 167 feet above
sea level, will subtend an angle of 19' at a distance of 5 miles. Check this

statement. (See Ex. 4, 31.)

6. How many minutes in the angle subtended by a target 1 yard in

diameter when viewed from a distance of 1000 yards?

7. How many minutes in angle if r = 1000 QP? (Fig. 52)

8. Show that a ball, viewed from a distance equal to 57 times its

diameter, will subtend at the eye an angle of nearly 1; at a distance of

3400 times the diameter the angle will be very nearly 1'; at a distance

of 206,000 times its diameter the angle will be almost exactly 1".

9. At what distance from the eye will a baseball subtend an angle of

1? Of 1'? Of 1"? (Diameter of baseball - 2.9 in.)

10. The moon's diameter is 2160 miles, the sun's 866,000 miles. Their
distances from the earth are 240,000 miles and 93,000,000 miles respec-

tively. What is the angular diameter of each body as viewed from the

earth?

11. Is the end of a lead pencil, held at arm's length, sufficient to cover

the disk of the full moon? Moon's angular diameter is 32'.

60. The limit of the ratio
sin ex

a.

In a circle of radius r (Fig. 53) let QP be a chord, QNP its arc,

2a its central angle, and ST a segment of the tangent line at N.

From geometry, the length of the arc QNP is greater than

the chord QP and less than the tangent ST. Taking half of

each of these lengths we have

MP < arc NP < NT.

Dividing by r:

MP arc NP NT
r r r

But
MP
r

arc NP

= sin a;

= a (radians);
/

NT NT A= = tan a. FIG. 53

Therefore, a being an acute angle measured in radians,

sin a < a (radians) < tan a.
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Example.

a = 10; sin a = 0.1736, = 0.1745, tan a = 0.1763.

Dividing the preceding inequalities by sin
,

K -^- <~
Sill a COS a

As angle approaches 0,
-

approaches 1, and the intermediate
COS ct

quantity, .
,
must likewise approach 1 . Also the reciprocal quantity

sin

sin , .

must approach 1.

THEOREM. The limit of the ratio
'-

,
as a approaches 0, is 1,

a fec*Vi<7 measured in radians.

COROLLARY. WAen angle a is quite small, the ratio -- will

differ only slightly from 1.

We may therefore write

-- = 1 e, where e is a small positive number,a

and

sin a = a ca.

If we neglect the small quantity ca
y
we have

sin a = a (radians), approximately.

// a is a small angle, sin a and radian measure of a are nearly

equal.

From tables we can take the values of a and sin a and calculate

e. We find, in round numbers,

e =
^-- approx. when a = 10,

e =
^7: approx. when a = 5,
oUU

e =
2Q OQQ

approx. when a = 1.
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Up to 5 the values of a (rad.) and sin a are so nearly equal

that we can use them interchangeably in many applications. It

amounts to replacing a short chord of a circle by its arc or vice

versa, because, in Fig. 53, r sin a is the half-chord and ra the

half-arc.

In the problem of 59 we had chord QP = 200 feet,
= 1 =

p=-s radians. Now arc QP = rB. Replace arc QP by chord QP;

then

200 =
r-g^;

r = 57.3x200.

The error in r due to using chord QP in place of arc QP is about

1 part in 20,000 or 11,460 -* 20,000 = 0.6 foot. There is of

course also a slight error due to the use of 57.3 in place

,180
of

7T

The limit of the ratioJ
a.

If we divide the inequalities

sin a < a < tan a

by tan a, we obtain

cos a < < 1.
tan a

From these inequalities we derive, by the reasoning used

above, the following theorem.

THEOREM. The limit of the ratio
,
as a approaches 0, is

1, a being measured in radians.

COROLLARY. When angle a. is quite small, the ratio will

differ only slightly from 1 .

We may therefore write
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= 1 -h c, where e is a small positive number;

or,

tan a = a -f- a.

If we neglect the small quantity e, we have

tan a = a (radians), approximately.

// a is a small angle, tan a and the radian measure of a are

nearly equal.

The values of e for a = 10, 5, 1, respectively, are practically

the same as those stated above for sin a.

Values ofS and T. For small angles, less than 5, the values of

log sin a and of log tan a can not be obtained accurately by

interpolation in the tables. To obtain more accurate values, the

preceding approximations for sin a and tan a are used. We con-

sider first the case of sin a, when angle a is small and is expressed

in minutes.

If a represents the number of radians in our angle and a the

number of minutes, we have a = 1AQ .W . a
',
and therefore

lUolHJ

sin a = a =
1 AQnA a', approximately.lUoUU

Therefore

log sin a = log a -f log (
JQ^QQ^

approximately.

If we write

log sin a = log a' 4- S,

the value of >S will differ only slightly from log ( inaon)'
^ *s

tabulated in Table II of Appendix B. To find the value of

log sin a, when a is a small angle, add S to log a.

In the same way we obtain

log tan a = log a.' -f T,

where the values of T are likewise tabulated.

If a small angle is given to seconds we would proceed as above,

but start with the relation a. = g . onA a" and use the corre-

spending values of S and T.
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61 . The mil unit of angle.

(I) If the circumference of a circle be divided into 6400 equal

arcs, each arc will be equal, very nearly, to one one-thousandth

part of the radius. The length of one such arc is equal to

circumference 2irr i

6400 6400 1000
very nearly.

A more accurate value is +^0 ^
cations the divisor 1018.6 is rounded

off to 1000. This introduces an error

of about one part in 50, or 2%.
The central angle subtended by

an arc equal to one 6400th part of

the circumference is called a mil. It

is the standard unit of angle in the

artillery service.

We have then

6400 mils = 360 = 2w radians.

1600 mils = 90 = a quadrant.

90x60

but for practical appli-

160 mils = 90

FIG. 54

t
..

1 mil rnnlouu
03-4.minutes = 3g minutes.

For practical purposes we regard the mil as the central angle

whose arc (or chord) is one 1000th part of the radius.

(II) Applications involving small angles.

According to the definition of the mil the following statements

are approximately correct.

1) A target one yard in diameter and 1000 yards distant from

a gun will subtend at the gun an angle of 1 mil, very nearly.

2) A target D yards in diameter and 1000 yards distant

from a gun will subtend at the gun an angle of D mils, very

nearly.

3) A target D yards in diameter and r yards distant from a gun

will subtend at the gun an angle of mils, very nearly.
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The last two statements are quite accurate for angles up to

100 mils or 5.6. Statement 3) may be written in the form

,N ..j i , ,
,

, diameter of target
3 ) mils subtended at gun =

TTTTVT?' &
range -r 1000

If we let M represent the number of mils, D the diameter of

target in yards, r the range in yards, and R the range in thou-

sands of yards so that R = r ~ 1000, we have

3") M =
j^',

/e =
^;

D

Examples.

(a) How many mils will be subtended by a target 65 yards in diame-

ter when the range is 2750 yards?

M -J- = 24 mils.
2./oO

(b) What is the range when a target known to be 45 yards in diame-

ter subtends an angle of 21 mils?

R = Jf = 2.143; r = range = 2143 yards.

EXERCISES 28

The first three exercises may be used for oral drill. Use should be made
of the short cuts of arithmetic.

1. Determine M. 2. Determine r. 3. Determine D.

D r D M r M

4. In Fig. 52, if the gun is at O and chord QP is the target,

OP -OP
(mils) = innn approx.; sin J0 = ^ exactly.

T - 1UUU r

Take QP = 180 yards and r = 2000 yards; calculate from each of these

equations and compare results.

6. State which of the following equations are exact and which are ap-

proximate; where approximate, give the exact value.

(a)
- radians =* 800 mils; (c) 1 degree = 17.78 mils;

(b) 160 mils = 9; (d) l radian = 100 mils-
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6. What is the distance to a ship which is known to be 300 feet long
and which subtends an angle of 20 mils when viewed broadside on?

7. What angle in mils is subtended by a building 180 feet long when
viewed broadside on from a distance of 1500 yards?

8. What angle is subtended at a target by a battery front of 80 yards,
the target being 2400 yards distant in a direction perpendicular to the

center of the battery front?

9. If a gun is sighted at a tree 2400 yards away and if a concealed

target is known to be located 75 yards to the right of the tree, through
what horizontal angle must the gun be deflected to bear in the direction

of the target?

10. If the four guns of a battery are mounted at the vertices of a square
50 yards on a side and if a target is in line with one diagonal of the square
and 2500 yards from its center, what angle is subtended at the target by
the other diagonal of the square?

(Ill) In the artillery service the mil is used when angles are

not small enough to permit the use of approximate methods.

A brief table, Table #, to be used with the mil as argument,

appears on page 89. The circular and radian values of the

angles have been added merely for comparison.

EXERCISES 29

Determine angle M.

(a) (b) (c) (d) (e)

1. sin M 0.560; 0.130; 0.500; 0.930; 0.660.

2. cos M 0.300; 0.500; 0.770; 0.912; 0.989.

3. tanM 0.220; 0.100; 0.620; 1.500; 2.00.

Solve the following right triangles. The notation is as in Fig. 33. The
symbol m is used for mil.

4. c - 1800; a - 600m. 9. c = 1550; ft
- 1200m.

6. a = 125; a = 740m. 10. c - 300; a - 200.

6. b = 250; a - 900m. 11. b - 150; c = 175.

7. a - 1200; ft
= 300m. 12. a - 125; 6 - 150.

8. b - 2250; ft
- 250m.

13. From a battery position the inclined range to an airplane is found
to be 4000 yards and its angle of elevation 540m. How high is the airplane?
What is its horizontal range?

14. If an aiming point is 1500 yards from a gun and an invisible target
is known to be 600 yards to the right of the aiming point as seen from the

gun, what is the angle at the gun between direction of aiming point and
direction of target?

15. In Fig. 55 take OT = 3600 yards, OG - 1600 yards, and angle
TOG - 2000m. Calculate HG, OH, GT, and angle GTO.
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TABLE B

1600 90 00 1.571 1.000 .000
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62. Azimuths. Azimuth difference.

The direction of a line in a horizontal plane may be indicated

by giving the angle which the line makes with a line of known

direction. This angle is called the azimuth of the line.

Let 0, G, T denote, respectively, the position of an observer,

a gun, and a target. Let TS, due southward from T, be used

as the reference line for azimuths. The observer at knows

the lengths and directions (azimuths) of lines OT and OG.

He wishes to obtain the azimuth and length of GT for trans-

mission to the gunner.

Now Z STG = Z STO + Z OTG;

or, azimuth of GT = azimuth of OT + azimuth difference OTG.

Calculation of azimuth difference OTG and range GT.

We assume that OT is large in comparison with OG, so that

A OGT is a long slender triangle. Assume that the length

of OT is less than the length of GT. Draw GH perpendicular

to OT (produced), forming right triangle OG//, in which OG and

Z GOH are known.

Then HO = OG cos GOH and GH = OG sin GOH.

Range GT = HT apprax. = OT + OH = OT + OG cos GOH .

GH OG sin GOH
Azimuth diff. OTG (mils) GT + 1000 GT -^ 1000
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Exercise. Calculate these quantities when azimuth of OT is 30, OT =*

2400 yards, OG - 300 yards, Z TOG = 100. Repeat the calculations with
the same data except that Z TOG is now 80. The range correction HO
will now be negative.

63. Parallax. Range finder.

If a target, T, (considered as a point) is viewed from two

p,.

Fir,. 56

points P and Q, angle PTQ is called the parallactic angle at T
7

,
or

simply the parallax of T
7

,
due to line-segment PQ.

We shall assume that PT = QT, as in Fig. 56, where angle m
is the parallax of T due to line-segment PQ of length L

One type of range finder is an instrument which gives the

range to a target by means of the angle subtended at the target

by a tube of known length which forms part of the instrument.

Two images of the target caught at the ends of the tube are

brought to coincide by turning a milled head, the amount of

turning depending on the parallactic angle, which in turn de-

pends on the range.

Exercise 1. If I = 4 yards in Fig. 56, what range should correspond

to each of the following parallaxes:

m = 1 mil; 5 mils; 15 mils; 3 mils; 7 mils?

Exercise 2. If / = 6 yards what are the parallaxes corresponding to

the following ranges:

r = 1000 yards; 3000 yards; 1500 yards; 1200 yards; 2400 yards?

Parallax as used in Astronomy.

When the direction of the center of the sun, moon, or one of

the nearer planets is observed from the surface of the earth a

correction must be made to obtain the direction as it would be

measured from the center of the earth. - This is due to the fact

that astronomical tables give the position of the bodies of the

solar system treating each body as a point.
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Let be a position of an observer on the earth's surface, Oil

a horizontal line, M the center of the moon, angle HOM the

angle of elevation (altitude) of the moon's center above the

horizon.

Then the difference of direction of M as seen from and C
is angle OMC, called the parallactic angle or merely the parallax

of the moon at altitude 9. This is angle p in the figure.

When the center of the moon is on the horizon, the parallactic

\ M

FIG. 56a

angle is OHC. This is called the moon's horizontal parallax and

is represented by the letter TT.

Take CO = R = 4000 miles and CM = CH = 240,000 miles.

Then
sin TT = TT (radians) approx. =

^|{j$$Tf
= *V

That is:

angle TT = ^ of a radian

= ~c?r degrees = 0.95

= -an- minutes = 57.3'.

Exercise 1. The moon's distance from the earth varies from 221000
miles to 253000 miles. What is the corresponding range of variation of

the moon's horizontal parallax expressed in minutes?

Exercise 2. For the sun, the distance D is 93,000,000 miles. Show that

the sun's horizontal parallax is 8.8 ", if R = 3960 miles.

Hint: Angle * in seconds = 206000 -

Exercise 3. Calculate -K for Mars, when at the distance D = 50,000,000
miles.
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64. Path of projectile. Parabolic trajectory.

If a projectile leaves a gun at an angle with the horizontal

and with a muzzle velocity V Q feet per second (initial velocity or

speed), the horizontal component of VQ is V Q cos 6. This repre-

sents the rate at which the projectile will progress in a horizontal

direction and in t seconds the horizontal displacement of the

projectile will be tv Q cos 6 feet. (Air resistance neglected.)

The initial vertical speed will be v$ sin 6 which, if unchecked,

would give the height of the projectile in t seconds as tv Q sin 9.

But during t seconds gravity would cause the projectile to fall

\gp feet, (g
= 32.2), so the net height is (tv Q sin -

\gt~)

feet. Hence in t seconds the
"
coordinates

"
of the projectile in

feet will be (air resistance neglected),

x = tv Q cos 6] y =
ti\) sin -

\gt~.

Exercise, (a) Take v = 1200 feet per second, and = 30. Calculate

the values of the coordinates x and ?/ for t = 0, 5, 10, 15, 20, 25, 30, 35 sec-

onds. Plot the points (x, y).

(b) The curve so obtained is a parabola. The highest point will be

reached in about 19 seconds. The exact value of the time of arrival at

the highest point, call it T, will be T = v n sin 9 -=- g because the initial

vertical speed v sin is reduced at the rate of g feet per second. Calculate

T with VQ and as in (a).

(c) Having found T, we can find X and F, the coordinates of the highest

point of the trajectory:

X = TvQ cos 0; Y = TV, sin 6 -
i gT* = (" S

o
m 6)\

Calculate X and Y. (The answers will be in feet.)

(d) The descending part of the trajectory (parabola) is symmetrical
with the ascending part. Hence

time of flight = 2T = 2t> sin -5- g\

horizontal range OB = 2X = 2Tvo cos 0.

Calculate the time of flight and the range.
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VII FUNCTIONS OF
SEVERAL ANGLES

65. Formulas for sin (x -f y) and cos (x + y).

Let x and y be two angles, each of which we first assume to be

less than 90. Their sum will then fall in the first or the second

quadrant. The two cases are illustrated in the figures, and the

demonstration which follows applies to either figure.

Q/ A

N M

FIG. 58a

M

FIG. 58b

Construct / XOP = x and Z POQ =
y, the terminal side of

x being taken as the initial side of y.

From Q, any point on the terminal side of ?/, draw perpendicu-

lars NQ and PQ to the sides of angle x, produced if necessary.

Draw MP JL OX and KP _L NQ.
Then Z KQP =

x, and in either figure,

NQ MP + KQ MJP KQ"
OQ

'

PQ
OP OQ

'

PQ OQ
Hence

(a) sin (x + y) = sin x cos y + cos x sin y.

sin (x + y)
OQ OQ

OP KQ
OQ

+
PQ

OQ

94
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Also, noting that ON in the second figure is a negative segment,

ON OM - NM OM KP
COS (X + V)

-
QQ- Q

~
QQ QQ

_OM OP KP PQ~
OP

'

OQ PQ
'

OQ
Hence

(b) cos (x + y)
= cos x cos y - sm x sin y.

66. Generalization of formulas (a) and (b).

In the preceding proofs we assumed angles x and y to be acute

angles. Geometric proofs may be made to show that formulas

(a) and (b) hold for any two angles. We shall not do this, but

instead, shall use the method of proof by induction.

We begin by showing that, if formulas (a) and (b) are true

for two angles a and 0, they will remain true when either angle

is increased (or diminished) by 90.

First we note two relations obtained by use of Rule (b) of

21. If is any angle,

(1) sin (6 + 90) = cos 0; (2) cos (d + 90) = - sin 6.

Now we assume that the following equations hold for two

angles a. and 0,

(a') sin (a + ft)
= sin a cos -f cos a sin 0;

(b') cos (a -f 0) = cos a cos /3
- sin a sin j3.

We shall show that those equations remain true when angle

a is increased by 90. Accordingly we replace a by a! = ct +
90. We obtain

(a") sin (a + 0) = sin GL cos -f cos a sin 0;

(b") cos (' -f 0) = cos a cos - sin a sin /3.

We wish to prove that the last two equations are true if the

first two are true. Consider equation (a").

The left hand side may be written, by equation (1),

sin (a' + 0) = sin (a + + 90) = cos (a + /}).

The right hand side, by use of (1) and (2), becomes

sin (a -f 90) cos ft + cos (a + 90) sin = cos a cos ft
- sin a sin ft.
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Substituting these in (a") we obtain (b') which was assumed

to be true. Hence (a*) is true.

In the same way we can show that (b") is true.

We have now shown that if equations (a') and (b') are true

in any given case, they remain true when either angle is increased

by 90.

But they are true when a = x and j3
=

y, x and y being acute

angles; hence they are true when a = x + 90; if true for a
= x + 90, they are true for x + 2 -90; and so on. Similarly

for angle 0.

In a similar manner it can be shown that (a') and (b') remain

true when either angle is diminished by 90.

Since any angle can be represented by x n-90 where x is

an acute angle, we have proved that formulas (a
7

) and (b') are

true for all values of a and /3.

Examples.

1. sin 75 = sin (45+ 30) = sin 45 cos 30+ cos 45 sin 30

V2 \/3 \/2 1 \/6+ \/2
_~

2
'

2 2 '2~ 4

2. cos 255 = cos (225+ 30) = cos 225 cos 30 - sin 225 sin 30

V2 V / V2\ 1 - \/6+ V2
'2 V 2/22

3. Given sin a = f, cos =
f ,

both angles in the first quadrant.
Calculate sin (a 4- 0).

From sin a = f we find cos a = f ;

from cos = f we find sin =
o

Substituting these in the formula (a), sin (4- 0) = sin a cos 04-
cos sin 0, we obtain

- , . x 32 4

4. Given sin = f ,
a. in the first quadrant; cos = f ,

in the third

quadrant; calculate the value of cos (a f 0).

(b) cos ( + 0) = cos cos - sin a sin 0.

4 V
From the given data we find cos a =

=, sin =
^-. Then

o o
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COB

6. Show that-^.- = cos ft tan a.
cos a sin

cos ( + ft) _ cos a cos ft sin a sin ft

cos a sin cos a sin /3

_ cos a cos sin a sin ft

cos a sin ft cos a sin ft

= cot ft tan a.

* ui ^ * cos (45+ A) 1 - tan A
6. Show that ^ {Aro \

' = - -rsm (45 + A) 1 -f tan A
cos (45 4- A) _ cos 45 cos A sin 45 sin A
sin (45 + A)

~
sin 45 cos"A -f cos 45 sin A
1 A l '

Acos A -- sin A
_ V2_V2 _

: cos A H -= sin A
V2 V2

. sin A
_ cos A sin A _ cos A

cos A + sin A
1

sin A
cos A

! - tan A"
1 -f tan A

NOTE. Formulas (a') and (I/) should be learned in verbal form rather

than in terms of any particular letters.

(a/) The sine of the sum of two angles equals the sine of the first

angle times the cosine of the second plus the cosine of the first angle

times the sine of the second.

(b') Let the student give the verbal statement.

EXERCISES 30

1. sin 90 = sin (30 + 60) = 1.

2. cos 90 = cos (30 + 60) =0.

3. sin 105 = sin (45 + 60) = J(V2 + \/6).

4. cos 105 = cos (45 + 60) = {(V2 - V6).

6. sin 165 = sin (30 + 135) = }(VB - V2).

6. cos 105 = cos (30 + 135) = -
i(V5 + V2).

7. sin 285 = sin (60 -f 225) = - \(VQ + \/2).

8. cos 285 = cos (60 + 225) =
i( V<J - V2).
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Prove the identities of Exercises 9-17, using formulas (a) or (b).

9. sin (x + 90) = cos x. 16. sin (x + 30) = J( V3 sin x 4- cos x).

10. cos(z-f-90) = -siv ' ,. . , AC0 . ,. N
. 16. sm (x + 45) = -

(sin x -f cos x).
11. sm (x + 180 )

= - sin x. \/2

12. cos (x + 180) = - cos x. ,_, , . cox 1
,

.

< . , ^ox 17- cos fa + 45 )
= ~~^ ( cos x ~ sin *)

13. sin (a: + 270) = - cos x. V'2

14. cos (x + 270) = sin x. 18. sin 2x = 2 sin x cos x [2x = x + x].

19. If sin a = | and sin = f ,
a. and /3 in quadrant 1, calculate sin (a -f fi)

and cos ( -f j8).

20. If sin a = f ,
a in quadrant II, cos =

|, in quadrant IV, calculate

sin ( -j- 0) and cos (a. -f #).

67. Formulas for sin (c*
-

0) and cos (a
-

0).

Replacing /3 by -
ft in (a) arid (b), we have the two equations

sin (a ft)
= sin a cos (/?) + cos a sin ( ft) ;

cos (a
-

ft)
= cos a cos (- /3)

- sin a sin (- ft).

But cos (- ft)
= cos and sin (- ft)

= - sin 0.

Therefore the two preceding equations become

(c) sin (a
-

ft)
= sm a cos - cos a sin ft;

(d) cos (a -
ft)

= cos a: cos ft + sin a sin ft.

There are really two steps involved here:

1) in (a) and (b) replace ft by - 6 and reduce as above;

2) then replace the letter 6 by the letter ft, to conform to the

letters used in (a) and (b).

Equations (a), (b), (c), (d) are usually called the addition and

subtraction formulas of trigonometry. All the other working
formulas are deduced from them.

Examples.

1. cos 75 = cos (135 - 60) = cos 135 cos 60 + sin 135 sin 60

V2 1 \/2V3_V6-V2~ "T'2 +
~2""2~

~
4

2. Given sin a = f, cos =
;
calculate all the values of cos (a 0).

Angle a may lie in quadrant I or II; cos a. = }. Angle ft may lie

in quadrant II or III
;

sin ft
=

-5-o

cos (a
-

ft)
= cos a cos

4/ 2\ 3/ A/5\
/3 -f sin sin /3

= -( - - I -f -[ -
).

5\ 3/ 5\ 3 /
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The signs may be paired in 4 ways, giving 4 answers. Choosing both

upper signs gives one answer:

V5\ -8 + 3V5

The student should write out the other three answers.

EXERCISES 31

By use of the equations in Exercises 1-3 calculate the sine and cosine

of the angle on the left.

1. 90 = 135 -45. 2. 15 = 60 -45. 3. 105 = 135 - 30.

Prove the identities of Exercises 4-9 by use of (c) or (d).

4. sin (90 - a) = cos a. 7. cos (180 - a) = - cos a.

6. cos (90 - a) = sin a. 8. sin (270 - a) = - cos a.

6. sin (180 - a) = sin a. 9. cos (270 - a) = - sin a.

10. Given sin a = }| and cos (3
=

,
a and in quadrant I, calculate

sin (a /3) and cos (a -
0).

11. Given sin = jf and cos ft
=

f, a in quadrant II and (3 in quadrant
IV, calculate sin ( (3) and cos ( p).

10 r> / ATO\ sin a - COS ot , ,_ . COS a + sin a
12. Prove: sin (

- 45 )
= -=

;
cos (a - 45 )

= ^
V2 V2

68. Formulas for tan (<* g) and cot (a g).

Dividing (a) by (b), member by member, we have

(a -f g) sin a cos g -f cos a. sin g
t ( 4. R\ -

cos (a + /3)

~
cos a cos - sin a sin

j

sin a. cos g cos a sin g

_ cos a cos g cos o; cos g

1
sin a sin g

cos a cos g
Hence

(*\ 4 f , /ON
'an a + tanp

(e) to" (a + -
1 -tana tan f

Similarly,

/x\ ^ / /,\ cot a cot 8 -1
(f) C0t (a + -

rf + coffl-

Also, from (e) and (f), by changing the sign of g,

tan a - tan g
(g) tan (a

-
g) =

1 + tana tan g
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COt a COt /3 -f 1
(h) COt (a - ft)

COt ft
- COt a

Example.

With the data of Example 3, 66, calculate tan (
-

/3). First ca^

culate tan a = f ,
tan /3

= -. Then

3 V5
4 2 6-4V/5

tan (a 0) =

/3_W V5\

W\ 2 /

EXERCISES 32

Calculate the tangent and cotangent of the first angle in each of the

equations below.

1. 15 = 60 - 45. 4. 165 = 135 + 30.

2. 105 = 60 + 45. 6. 135 = 180 - 45.

3. 105 - 135 - 30. 6. 225 = 180 + 45.

69. Formulas, Group B.

For convenience we collect formulas (a), (b) . . .
, (h) and form

Group B, numbering them consecutively with the formulas of

Group A. The formulas for cot (a ft) may be omitted; in

place of them use the formulas for tan (a ft) with the fractions

inverted.

Formulas, Group B

fc

(9) sin (a -f ft)
= sin a cos ft + cos a sin ft.

(10) cos (a -f- ft)
= cos a cos ft

- sin a sin ft.

(11) sin (a -
ft)

= sin a cos ft
~ cos a sin ft.

(12) cos (a -
ft)

= cos a cos ft + sin a. sin ft.

ten a + tan ftn<n i( j.^
(lo) tan (a + ft)

=
v ' '

,,A\ *f o\
(14) cot < + -

--- -

tana tan ft

COt ft
- 1

/II-N A f o\ tana - tan 8
(15) tan (

-
ft -

/i*\ 4 / o\ co * cof
(16) cot (

- -



FUNCTIONS OF 2a 101

70. EXERCISES 33
,

In Exercises 1-8 calculate sin 0, cos 0, tan 0.

1. 6 m 75 - 45 + 30. 5. = 15 - 45 - 30.

2. 6 = 105 - 150 - 45. 6. = 15 = 150 - 135.

3. - 180 = 150 + 30. 7. = 105 - 240 - 135.

4. 6 = 285 - 240 + 45. 8. = 195 = 240 - 45.

9. If cos = f ,
cos ft

= ^ ,
a and in quadrant I, calculate cos (a + 0).

10. If sin a = i |, sin /3
= iV, a and /3 in quadrant II, calculate

cos (a -
/3).

11. If sin x = f ,
sin y =

,
calculate sin (z -f y) and tan (z + y):

(a) when x is in quadrant I and ?/ in quadrant I;

(b) when x is in quadrant I and y in quadrant II;

(c) when x is in quadrant II and y in quadrant I;

(d) when x is in quadrant II and y in quadrant II.

Show that Exercises 12-21 arc identities.

12. sin (60 + a) - sin (60 - a) = sin a.

13. cos (45 -f x) - cos (45 - x) = - A/2 sin x.

14. cos (A - 45) - sin (A + 45) = 0.

16. sin 5x cos x -f cos 5# sin x = sin 6#.

16. cos 3z cos 2x -f sin 3x sin 2x = cos x.

71. Functions of 2a.

Putting = a in (9), (10) and (13) of Group B, we have

(17) sin 2a = 2 sm a cos a,

(18) cos 2a = cos2 a - sm2
a,

= 1-2 sm2
a,

= 2 cos2 a -1.

^ 2 tan a

For cot 2a use ; =-. Similarly for esc 2a and sec 2a.
tan 2a
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NOTE. Formula (17) in verbal form is:

The sine of twice an angle equals twice the sine of the angle

times the cosine of the angle.

However, we might put 2a =
j8, a =

r>
an(J obtain

(17') sin /3
= 2 sin ^ cos ,yAA

In verbal form, this would be:

The sine of an angle equals twice the sine of half the angle times

the cosine of half the angle.

The essential thing to notice in formulas (17), (18), (19) is

that the angle on the left is twice the angle on the right, or,

what amounts to the same thing, that the angle on the right is

half the angle on the left.

Examples.

1. From (17) or (17
;

), sin 60 = 2 sin 30 cos 30. Check this.

2. From (18), cos 180 = cos2 90 - sin2 90
= 1-2 sin2 90
= 2 cos2 90 - 1. Check these.

9 fan fiO

3. From (19) tan 120 =
1 _ t"n2 60'

Che k this '

Oj.
O~.

4. sin 3x = 2 sin cos (17)Z &

5. cos 60; = 1 - 2 sin2 3x. (18)

, 1 -f cos 2 ,mt -
: ~ = cot a.

sin 2of

1 + cos 2 = 1 -f (2 cos2 a - 1)

sin 2
~

2 sin a cos a.

__
2 COS2

a. _ COS a.
~~

2 sin a cos a
~~

sin a

7. Calculate the functions of 2x when cos x =
\

We first find sin x =
J and tan x =

J.

Then sin 2x = 2 sin x cos x = 2( })(f )
= fi

^24

/ 01 ^ A 1 4- cos 2 ,

6. Show that -
: = = cot

sin 2of

= COt a.



FUNCTIONS OF \a 103

We might also get tan 2x from sin 2x -s- cos 2x. The other three

functions can be obtained by inverting the values just calculated.

Observe that cos x = f means that x may lie in quadrant I or IV.

Then 2x will lie in quadrant II or III. The upper signs in the answers

correspond to 2x in quadrant II, the lower signs to 2x in quadrant III.

Check this by looking up in the table the two basic angles (34) and

doubling each of them.

EXERCISES 34

1. Obtain the functions of 00 by putting a = 30 in these formulas.

Check the results.

2. Check the formulas with = 150.

3. Check the formulas with - - 60.

4. Check (17) and (18) with a = 45.

6. Prove: 2 sin 20 cos 20 - sin 40.

6. Prove: 1 + cos 80 = 2 cos 2 40.

7. Prove: sin2 50 + cos 100 = cos2 50.

8. Prove: 1-tanMO^^'
1

^.
9. Calculate the value of tan 2x when tan x =

$.

10. Calculate the functions of 2a when sin a =
-fy.

Answers: sin 2a =
-}-jj--;

cos 2a =
-J J-; tan 2 =

{ \ jj.

Prove the following identities.

11. sin 4 = 2 sin 2a cos 2<*.

12. cos 4x = 1 - 2 sin2 2j = 1 - 8 sin2 j cos2 x.

13.
~

(

o
S

= tan x - 14 - (-sin # + cos PY~ = 1 -H * in 2/3.sin ^x

72. Functions of ^.
The second and third values of cos 2a in (18) are

cos 2a = 1 - 2 sin2 a, cos 2a = 2 cos2 a - 1.

Solving these for sin a and cos a respectively, we have

cos 2a
sin /I

- cos 2a ll

-^
-

^
-

,
cos a =

-4f

Replacing a by ^a, these become

(20) n i
= Lz^,

(21)
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In formula (20) the sign before the radical must be taken +
when angle \a lies in quadrant I or II because the sine function

is positive in those quadrants; the sign must be taken when

angle \a lies in quadrant III or IV.

In formula (21) the sign before the radical must be taken -f

when \OL lies in quadrant I or IV, and - when \OL lies in quadrant

II or III.

Dividing (20) by (21), member by member,

II - COS a 1 - COS a. Sin a
(22) tan -

.
- -

V ' 2 ~
II 1 + COS a Sin a 1 + COS a

The second of these forms is obtained by multiplying both

sides of the fraction under the radical sign by 1 - cos a. This

gives

/(I
- COS a)

2
t ^ /(I

- cos a)
2 1 - cos a,

tan \a = /(

\-
I1 cos2

a. ^ sin2 a sin a

This fraction always has the same sign as tan |a, so the sign

has been dropped. The third form for tan \a. comes from

using the multiplier 1 -f cos a instead of 1 - cos a.

The student should state formulas (20), (21), (22) in verbal

form. Note that the angle on the right is twice the angle on

the left.

Examples.

1. In formula (20) put <*
= 30. Then

sin 15 = + J-
- cos 30

2. Prove that

1 sec a _ I

sec a sec a

~~ a O ' 9 ^= - 2 sm2

sec a 2

1 = cos a - 1 = (l
- 2 sin2

1)
- 1 = - 2 sin2 7i-

3. Prove that sin a tan
-^
= 2 sin2

L 2t

, a n . a ot , a
sm a tan ^ = 2 sm

75
cos ^ tan

-^& & t

cos
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73. Formulas, Group C.

(17) sm 2 = 2 sm a cos a.

(18) cos 2<x = cos2 a - sm2 a
= 1-2 sm2 a

= 2 cos2 a - 1.

/^N r 2 tan a
(19) ton 2 =

^
-

v '
1 - tan2 a

(20) sm|a= /x
- c 5a

COS
/I=

If

(22) ton 20:
=

- cos a

4- COS a

_ 1 - COS a

sin a

_ sin a~
1 -f cos a

74. EXERCISES 35

1. Calculate the values of cos 15 and of tan 15.

2. Calculate the functions of 22$ from those of 45.

3. Calculate tan - when cos a = f ,
a in quadrant I.

4. Calculate the values of tan 2<* when cos a =
5.

Prove the following identities.

6. sin 6<* - 2 sin 3a cos 3a. 12. (sin
- - cos -^ - 1 - sin

2 - sec2 V 2 2/
6. cos M -

gec2 ^
-

13 ^ gin ^ CQt
I
= 2 CQg2

1.

7. tan
I
= esc - cot . u< CQg x(1 + gec x) _ 2 Cog2

x

8. cot a - tan a - 2 cot 2a. 15. 2 tan a cot 2 = 1 - tan2
a.

A .L o 2 sin cos ^e'oA^x *2 a i
9. tan 20 =

=n; ^"5^* 1 2 cot ^ cot a = cot2

^ - 1.
cos2 6 - sm2 22

1 17. cos 2x - sin2 x (cot
2 x -

1).

11. cos* 18
- sin* /9

- cos 2/3.

c ^ ~
cot2 x -
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75. Formulas for sin u sin v and (or cos u cos v.

Formulas (9) to (12) of Group B are

sin (a + ft)
= sin a cos ft -f cos a sin /3,

sin (a ]S)
= sin a cos cos a sin 0,

cos (a -h 0) = cos a cos - sin a sin /3,

cos (a
-

ft)
= cos a cos + sin a sin ft.

Forming the sum and difference, respectively, of the first two

equations, we have

(p) sin (a + ft) + sin (a ft) =2 sin a cos ft;

(q) sin (a + ft)
- sin (a

-
ft)

= 2 cos a. sin ft.

Forming the sum and difference, respectively, of the other-

two equations, we have

(r) cos (a H- ft) 4- cos (a
-

ft)
= 2 cos a cos /3 ;

(s) cos (a 4- /3)
- cos (a

-
ft)

= - 2 sin a sin ft.

Now in the last four equations let

a + ft
= u and a -

ft
= f .

rrn M + V
,

W - V
Then a = ~ and p = -

Substituting in equations (p), (q), (r), (s), we have four for-

mulas, called the addition theorems of trigonometry, namely

Formulas, Group D

(23) sm u + sm v = 2 sm ^ C05 -~ir^*

(24) sm u - sin v - 2 cos ~ sin
U ~ v

*

it &

(25) cos u + cos v = 2 cos ^ cos ^& 2

(26) cos u - cos v = - 2 sin s~" 5in
^

o

The four equations (p), (q), (r), (s) are themselves often con-

sidered as a group of formulas, and are repeated below, with

right and left members interchanged.
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NOTE. When u is less than v, the angle in the second factor on the right
is negative. Change to the positive angle by use of 23.

Formulas^ Group D r

(23') 2 sin a cos ft
-= sin (a + 0) + sin (a - 0).

(24') 2 cos a sm = sin ( + /})- sin (a - 0).

(25
r

) 2 cos a cos = cos (a + 0) + cos (a - 0).

(260 - 2 sin a sin /3
= cos (a + /3)

- cos (a
-

0).

Example 1.

,.no, -mo o 60 +40 60 -40
.sin 00 -f sin 40 = 2 sin-- - cos-^

-
= 2 sin 50 cos 10.

Example 2.

rn o <rv> o 60 +40 . 60 - 40
MII 60 sm 40 = 2 cos-~- sin--r

-
= 2 cos 50 sin 10.

Example 3.

- ,no ,v.o o 40 +60 . 40- 60
sin 40 - sin 60 = 2 cos-~- sin

2
""

2

= 2 cos 50 sin (- 10)
= - 2 cos 50 sin 10.

We might also write sin 40 - sin 60 = -
(sin 60 - sin 40),

and proceed as in Example 2.

Example 4.

2 cos 80 cos 50 = cos (80 + 50) + cos (80 - 50)
= cos 130 + cos 30.

Example 5.

- 2 sin 80 sin 50 = cos 130 - cos 30.

Example 6.

cn ,. , cos 75 4- cos 15 /-Show that ^-^ ^F-O
= - v3.

cos 7b cos 15

cos 75 4- cos 15 2 cos 45 cos 30

cos 75 - cos 15 - 2 sin 45 sin 30

= - cot 45 cot 30 = - V3.
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Example 7.

tan
" +

sin <* -f sin 2ou xu xShow that
sm a. sm j8 . /3

. g+ <

4 Sill ~ COS. ~ ~
sm g 4- sm _ 2 2

2 cos
-5

sin -
2 2

4.
01+0

a+0
tan ~2-

tan ^ cot
2 2 a-

76. EXERCISES 36

Express the sums or differences as products:

1. sin 70 4- sin 50 = ? 6. cos 80 - cos 50 = ?

2. cos 70 4- cos 50 = ? 6. cos 50 4- cos 80 = ?

3. sin 70 - sin 50 = ? 7. sin 140 4- sin 160 = ?

4. sin 50 - sin 70 - ? 8. cos 140 - cos 160 - ?

9. sin 140 4- cos 160 = ? (NOTE, cos 160 = - sin 70.)

10. sin 40 4- cos 70 = ? 11. cos 280 4- sin 140 = ?

Express the products as sums or differences:

12. 2 sin 60 cos 20 - ? 15. 2 sin 60 sin 20 = ?

13. 2 cos 60 sin 20 = ? 16. 2 cos 130 sin 50 = ?

14. 2 cos 60 cos 20 - ? 17. 2 cos 40 cos 140 = ?

Prove the identities:

18. sin 3z 4- sin 5x = 2 sin 4x cos x.

19. sin 10a 4- sin 6 = 2 sin 8 cos 2.
20. cos 2x 4- cos 4x = 2 cos 3x cos x.

21. sin 7/3
- sin 5/3 - 2 cos 6/3 sin 0.

22. cos 40 - cos 60 = 2 sin 50 sin 0.

23. cos y 4- cos 2?/ = 2 cos
-^-

cos -
^ <u

24. cos (a 4- 45) 4- cos (a - 45) = V2 cos a.

OR . /7T \ . /T \
26. sin (

- - a;
J
- sm (

-
4- z 1

= - sin #.

26. 2 sin 5<* cos 3a - sin 8a 4- sin 2a.

27. 2 sin 40 sin cos 30 - cos 50.

28. 2 COS a cos |8
- COS (a -

/3) 4- COS (a 4- /3).

29. 2 cos f a 4-
j- J

cos ( a -
^ )

cos 2a 4- J.
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77. EXERCISES 37

These exercises are placed here to afford further drill in the use of the
basic formulas of Trigonometry. Many are quite simple; others will test

the ingenuity of the best students.

1. If sin a = f and sin ft
= f ,

find the value of sin (a + ft) and cos

(a + ft) when a and (3 are both in the first quadrant.

2. As in exercise 1, when a and ft are both in the second quadrant.

3. If cos x = f and cos y = -
4
9
j , calculate sin (x -f y) and cos (x + y)

when x and y are both in the first quadrant. Calculate sin 2(x + y) and
cos 2(x + y).

4. As in exercise 3, when x and y are both in the fourth quadrant-

5. If sin x = % and sin y = f , calculate all values of sin (x + y) and of

sin (x -
y).

6. If sin a = f and sin (3
= f ,

calculate all values of cos (a -f 0) and
of cos (a -

#).

7. If cos a = 1 and cos ft
= f , calculate all values of tan (a -f 0) and

of tan (a -
(3).

8. Calculate tan (x + t/) when tan x = V and cot y = Vs.

9. Calculate the value of tan (2x - y) when tan x = ^ and tan y = ^.
10. Calculate cot (a -

ft) when tan a = k + I and tan = k - 1.

11. If tan a = 1 and tan =
j'^, calculate tan (2 + /3).

24. V2 sin (6
- 45) = sin 6 - cos 0.

25. sin (0 + v>) sin (0
-

??)
- cos2

<?
- cos2 0.
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26.

27.

28.

29.

30.

31.
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cos (u 4- v) cos (u -
v) = cos2 u sin2 v.

cot (A -)
= ^L11V V 1 - cot A

8

sin x sin (y -
z} 4- sin y sin (z

-
x) 4- sin z sin (x -

y) = 0.

cos x sin (y
-

z) 4- cos y sin (2
-
x) 4- cos 2 sin (x

-
y) = 0.

cos (x 4- ?/ 4- 2) = cos x cos y cos 2 - cos x sin ?/ sin 2

- sin x cos T/ sin z sin x sin y cos 2.

42. sec2 cos 20 = 1 - tan2
0.

43. 1 4- tan tan 20 = sec 20.

44. 1 - cos 2x = tan x sin 2x.

1 4- tan2

45. sec 20 =
1 - tan2

46.

47.

sin 20

1 4- cos 20

sin 20

1 - cos 20

48. cot2 - 1

49. 2 - sec2

cos 20
60.

= tan 0.

= cot 0.

= 2 cot cot 20.

= sec 2 cos 20.

1 4- tan

1 - sin 20 I - tan

38.

39.

40. sin 2x =

... cos 3x
51. = 2 cos 2x - 1.

cot - cot 20 = esc 20.

2 tan x

1 4- tan2 x

cos x

62. tan2 3

cos 30

1 - cos 2x

- 2

sin 3
<p 2 -f sin

63.

64.

sin 30

41. sec 2x

66. tan (45 4- v) - tan (45 -
v) = 2 tan 2^.

66.

sin cos

tan 4- cot _
cot - tan

=

= 2 cot 20.

src 20.

67.

68.

69.

60.

61.

cos <?
- sm <p

cos 5
<p
- sin 5

y?

cos (f>
- sin <p

sin x + cos x

cos x - sin x

sin 2x tan 2x =

sin 2<p
-

J sin2 2<p.

tan 2x + sec 2x.

4 tan2 x

1 - tan 4 x

cos2
4- sin2 cos 2^> = cos2

<p 4- sin 2
<p cos 20.

1 4- cos 2(0 -
v>) cos 2^ = cos2

4- cos2
(0

-
2<p).

tan2

(+5)

== sin 20.

4-1
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cos x + 1
63. --L = Sec 2x - tan 2x.-

os(x-f)
- A . sin x -h sin 2x
64. tanx

65. tan x =

1 + cos x + cos 2x

sin 2x - sin x

1 - cos x + cos 2x

cot2
-f

66. sec 20 -
1 tan 26 sin 20 .

cot 2 - tan2 e

sin - cos _ /T~^ sin 28

sin + cos
~~

* 1 + sin 20

(/j
/j\ 2

sin
7>
+ cos o)

= 1 + sin 0-

(f\
/j\ 2

sin - - cos
2)

= 1 - sin 0.

l-tan
70 '

1 +sin^
,

. e
1 -f- tan

1 + tan -

71.
~
= sec x -f tan x.

1 - tan ^

72. tan x - tan - = tan - sec x.

73. L_2cos*
sec v^ ^

74. sec2 - = 2 tan - esc x.

75. :

~ = COt ^r
sin 6^ 2

_c 1 -f sin 45 . p- 1076. r^ = tan o7 .

_ 1 -f sin x -f cos x .x
78. T:
-

:

- = COt ~-
1 + sin x - cos x 2

_ft . x /2 sin x - sin 2x
79. tan- = \~,

-r ir -

2
"
2 sin x 4- sin 2x

80. V3 sin 75 - cos 75 = V2.
|r^ /i Q/j *>n

81. sin ~ cos ^
- sin -^ cos ^ -f cos 40 sin 20 = 0.

& &

82. sin 4x + sin 2x = 2 sin 3x cos x.

83. sin 3x + sin 5x 8 sin x cos2 x cos 2x.

M cot 15 - tan 15 1
/^

cot 15 -f tan 15 2
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86 i-vfoTy
1 - V5 cos 75

86. cos 100 - cos 40 - - cos 20.

87. sin (? + )
- sin (

^
- a

J
= sin a.

88. COS I
j
+ a

J
- COS f

~ - a
J
= - V5 sin a.

89. cos (e + <p) + sin (0
-

p)
= 2 cos f

^
-

J
cos f

j -f v>

90. 2 sin fa +^J sin fa -
^j

= sin2 a - cos2 a.

91. sin f - + a
J
- sin ( - - a

J
= ^2 sin a.

92. cos 3x - cos x = 4 sin2 a: cos x.

sin 75 + sin 15 _ /=
**'

sin 75 - sin 15
" *

cos x+ cosy = _ t

cos x - cos y 22
95 (sin a -f sin ff)(cos a + cos ft) _ _ 2 a -

ff

(sin a - sin 0)(cos a - cos 0)
~

2

a (sin a 4- sin 0)(cos a - cos 0) * otl2_J?9O. 7 :
-

:

-
rrT
-

~~r ttill p:

(sin a - sm /3)(cos a + cos /3) 2

(sin 75 + sin 15)(cos 75 + cos 15) _
(sin 75 - sin 15)(cos 75 - cos 15)

~ "

qft
cos 2x -f cos 12x cos 7s - cos 3a; 2 sin 4s _ ^
cos 6s + cos 8x cos x - cos 3z sin 2x

99. sin a; + sin 2x + sin 3x = 4 cos \x cos x sin fx.

(Hint. Replace sin x + sin 3x by 2 sin 2x cos x and sin 2x by 2 sin x

cos x; from these results factor out 2 cos x and combine the remainders

by the formula for sin u + sin v.)

100. sin x - sin 2x -J- sin 3x = 4 sin \x cos x cos fx.

101. cos x - cos 2x 4- cos 3x = 1 - 4 sin Jx cos x sin fx.

ring* sin 29 + Bin 39

cos + cos 20 + cos 3d

103. cos 20 + cos 100 - cos 140 = 0.

104. cos 6 + cos 30 + cos 50 4- cos 70 = 4 cos cos 20 cos 49.

105. sin -f sin 30 + sin 50 + sin 70 = 16 sin cos2 cos2 20.

106. 4 sin2
v? cos2

<p + (cos
2

<p
- sin2

<p)
2 = 1.

107. (cos x cos ?/ + sin x sin ?/)
2 + (sin x cos ?/

- cos x sin ?/)
2 = 1.

4Aft tan 3x - tanx ,

108. z T 57- - tan 2x.
1 -f tan 3x tan x

4Aft tan (n + 1)0 tan n9
109<

,-j
1 4- tan (0 + $>) tan <?
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tan (>-) + ton ,

=^
1 - tan (0

-
<p) tan <<?

112. sin n0 cos -f cos n# sin 5 sin (n 4- 1)0.

113. 2 esc 4x + 2 cot 4x = cot x - tan x.

4-j Tf ,
&

i_ ji . Ja 4- & -/
- b 2 cos x

114. If tan x = -. show that \ r -f \ r =? ,a "a -6 *a 4- & Vcos 2x

116. 4 cos3 x sin 3x 4- 4 sin3 x cos 3x = 3 sin 4x. (See Ex's 18, 19.)

116. sin3 x 4- sin3
(120 4- x) -f sin3

(240 4- x) - -
J sin 3x.

117. cos 6x = 16(cos
6 x - sin6

x) - 15 cos 2x.

118. 1 4- tan6 x = sec4
x(sec

2 x - 3 sin2
x).

119. |^Lz^,tan'x. (Sec Ex's 18, 19.)
3 cos x 4- cos 3x

120. sin 2x sin 2y = sin2 (x 4- y)
- sin2

(x -
?/). (Factor the right-hand

side.)

121. sin 5 sin a = sin2 3a - sin2 2.

122. 8 cos2 a - 1 4- cos 4 = 8 cos4 a.

123. cos 2x 4- cos 2?/ 4- cos 2z 4- cos 2(x 4- y 4- 2)
= 4 cos (x 4- 2/) cos (y 4- 2) cos (z 4- x).

124. sin 2 x 4- sin'2
?/ 4- sin2 z 4- sin2

(x 4- y 4- 2)

= 2 - 2 cos (x 4- y) cos (?/ 4- z) cos (0 4- x).

125. cos'2 x 4- cos2
y 4- cos2 2 4- cos2

(x 4- y -
z)

= 24-2 cos (x 4- y) cos (x -
z) cos (y

-
z).

126. sin (x
- y -

z)
- sin x - sin y - sin z = 4 sin sin ^ sin

2
-

i t

127. sin 2 -f sin 20 4- sin 27 = sin 2(a 4- ft 4- 7) 4- 4 sin (a 4- /3) sin (0 4- 7)
sin (a 4-7)-

128. sin (a 4- - 7) 4- sin (a -
ft 4- 7) 4- sin (0 4- 7 - a) - sin (a 4- 4- 7)

= 4 sin a sin /3 sin 7.

129. cos (a 4- /3
- 7) 4- cos (0 4- 7 - a) 4- cos (a 4- 7 - 0) 4- COS (a 4- 4- 7)

= 4 cos a cos /3 cos 7.

130. Show that the equation sin x = a 4-
- is impossible.

131. For what values of a will the equation 2 cos x = a 4-
-

give possi-

ble values for x? Ans. a = 1.



CHAPTER-

VIII OBLIQUE
PLANE TRIANGLES

78. The law of sines.

Between the six parts of a plane triangle there exist, aside

from the angle-sum equal to 180, two other fundamental rela-

tions which we proceed to obtain. Additional relations will

then be derived from these.

In any plane triangle, the sides are proportional to the sines of

the opposite angles.

Let ABC be the triangle, CD one of its altitudes. Two cases

arise, according as D falls within or without the base (figures).

c

c-m D

FIG. 59a

First figure Second figure.

From A ACD, h = b sin a; h = b sin (TT a) = 6 sin a.

From A BCD, h = a sin 0; h = a sin /3.

Equating the values of h, we have in either case

a b
b sin a = a sin |8, or

114

sin a sin ft
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By drawing perpendiculars from the other vertices and com-

bining results we have the law of sines,

(1)
sin a sin /3 sin y

79. The law of cosines.

In any plane triangle, the square of any side equals the sum of

the squares of the other two sides, minus twice their product by the

cosine of their included angle.

In the above figures let AD = m.

First figure Second figure.

In A ACD, m = b cos a] m = b cos (TT
-

a) = - b cos a.

In A BCD, a2 = /i
2 + (c

- m)
2 a2 = h2 + (c + m)-

= /i
2 + c

2 - 2cm + m2
.

= /t
2 + c2 + 2cw -f w 2

.

But, in either figure, A2 + m2 = 62
.

Hence a2 = 62
-f c2 - 2cw. a2 = b2 + c2 -j- 2cm.

Replacing m by its value above, we have in either case,

(2) a2 = b2
-f c2 - 26c cos a.

(2') Similarly, 62 = a2
4- c2 - 2rw cos 0,

(2") and, c2 == a2 + 62 - 2ab cos 7.

The verbal statement of the law of cosines covers all three of

these equations.

80. Applications of the law of sines and the law of cosines.

Example 1.

In A ABC, given a = 40, b = 35, a = 50; to determine angle /3 to

the nearest minute.

T f . a sin . b .

Law of sines: T = or sin /3
= - sin a.

b sin /3 a

Substitute the given values:

sin ft
= -$ sin 50 = f X 0.7660 = 0.6702. (Table III)
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The basic angles (34) are: ft
= 42 5'; ft'

= 137 55'. We have two

possible values for angle ft but the second value must be discarded as

impossible because the sum a -f ft'
= 50 + 137 55' exceeds 180.

Fig. 60 shows the triangle drawn to scale, one marked segment

representing 5 units of length. First construct an angle of 50 =
;

on one of the sides of a lay off b = 35 = AC. With C as center and

radius a = 40 strike an arc to cut the second side of angle .

B'

25

FIG. 61

50

Example 2.

In A ABC, given a = 28, b = 35, a = 50; to determine angle ft

to the nearest minute.

As in Example 1 : sin ft
=

| J sin 50 = 0.9575.

Basic angles: ft
= 73 14'; ft'

= 106 46'.

Fig. 61 shows the construction and indicates two possible triangles:

A ABC with basic angle ft
= Z ABC and A AB'C with basic angle

ft'
= L AB'C.

Example 3.

Two sides of a parallelogram are 40 ft. and 50 ft. long, respectively,

and their included angle is 50. Determine the length of the shorter

diagonal. (Figure 62.)

50

FIG. 62

By the law of cosines:

d2 = 402 + 502 - 2-40-50 cos 50
= 1600 + 2500 - 4000 X 0.6428 = 1529.

d = 39.1+ feet.
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EXERCISES 38

In A ABC calculate the required element. Draw figures to scale.

1. a = 30, b = 25, a = 40; ft
= ?

2. a = 20, b - 25, a - 40; ft
= ?

3. 6 = 100, c = 75, ft 45; 7 = ?

4. 6 = 75, c - 100, = 45; 7 - ?

6. a = 75, c - 90, 7 - 55; a - ?

6. a = 90, c = 75, 7 - 55; a = ?

7. a - 5, 6 =
6, 7 = 70; c = ?

8. a - 10, 6 - 15, 7 - 45; c = ?

9. a = 25, c = 40, = 60; 6 = ?

10. a = 30, c - 100, = 30; 6 = ?

11. a = 4, 6 = 5, c = 7; a, 0, 7 = ?

12. a - 10, 6 = 15, c = 20; a, 0, 7 ~ ?

13. a - 30, 6 - 25, c = 20; , 0, 7 = ?

14. In Example 3 calculate the long diagonal.

16. An airplane travels E 40 N a distance of 150 miles, then E 70 X
a distance of 200 miles. How far is it now from the starting point? Solve

hy the law of cosines.

81 . The law of tangents.

In any plane triangle, the difference of two sides is to their sum

as the tangent of half the difference of the opposite angles is to the

tangent of half their sum.
ft t? i r\ .rt*

From the law of sines : TT
-

b sin

r r a
, i sin a

,
. j a sin a

1
Therefore: r + 1 = - -

-f 1 and r - 1 = -r z - 1.
6 sin 6 sin

^^ , a + 6 sin a + sin , a - 6 sin a - sin
Therefore: r =-

: 5
- and r =-

= 5
--

6 sin 6 sin j3

Dividing the last equation by the preceding equation gives

a - b _ sin a - sin

a + b sin a -f sin

2 cos j(a + 0) sin( -
ff)~

2 sin K 4- 0) cos J(
-

0)

= coti( + 0) tan $(<*
-

0).

That is,

a - b tan i(
-

0)
(3) a + b tan J(a + 0)
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Similarly,

/
3

/x <*-c tan\(a-y)

(3") and

a + c tan%(a+y)

b + c
~
tan\($ 4-7)*

The symmetry of these formulas makes them easy to remem-

ber. In actual practice, they are used in slightly modified form.

Thus the first of them is written,

tan J(
- = ~ tan J( + 0).

In A AfiC, a = 15, 6 = 10, 7 = 50. Determine the angles ,
to

the nearest minute.

Substitute in (3) :

a - b = 5, a+ 6 = 25, ( + 0) - i(180 - 50) = 65.

Then:
j,

-
^j?$^'> tan K - ^ =

i tan 65 = 0.4289.

}(
-

/s)
= 23 13'; sum = a = 88 13',

J( + /8)
= 65; difference = = 41 47'.

EXERCISES

In A ABC determine the two angles not given.

1. a = 25, b = 15, 7 = 60. 3. a - 50, c = 25, ft
- 42.

2. 6 = 16, c = 12, a = 40. 4. a = 24, 6 = 36, 7 = 70.

82. Functions of the half-angles.

When the three sides of a triangle are known, its angles are

best calculated by the formulas now to be derived.

From the law of cosines we have,

62 + c2 - a2

cos a =
2bc

In practice this formula is not convenient unless a, 6, and c

happen to be simple numbers. Now

. , /I
- cos a /,T7, , /I

- cos a" \
sin \a = W

^ (Why not W ~ ? 1
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But 1 - cos a = 1
jr?

=
:

2bc 2bc

a2 -
(b

-
c)

2 [a+ (b -c)][a- (b
-

c)]

2bc
~

2bc

1 - cos a _ (a + b -
c) (a

- b + c)

2
"

4bc

Let 2s = a + b -f c, or s =
-|(a + 6 + c).

Then 2(s
-

c)
= a -f b -

c, and 2(s
-

b)
= a - b + c.

1 - cos a 2(s
- b)2(s

-
c)

Hence ^
- ~

-~^

and, taking square roots,

sin %a --

Similarly,

(40 wnifl* ^" fl)(5
~

(4)
..!.. ^/V*"

- A* -
0.

ac

n~
t") and cm J-/ :

Observe that the sides appearing explicitly under the radical

include the angle to be calculated.

To obtain cos 4a, we have

/I + cos
cos Aa =

But 1 + cos a = I -f

2

+ c2 - a2

(b + c)
2 - a2

2bc

(6 + c + a)(6 + c -a)

Hence

(5) cos a =
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Similarly,

(5') c^^.^ZS,
(5") and cos ^ =^^"
Dividing sine by cosine we have

(6) tan \a = J^
-

b)(s - c)
t

s(s
-

a)

,6-) Mn .

T

In (6) multiply both numerator and denominator of the frac-

tion by 5 - a. Then

All these formulas should be memorized in verbal form, so

that a single statement contains all three formulas of any one

set.

83. Mollweide's equation.

This is an equation which involves all six parts of triangle ABC
and may be used as a check formula to insure that calculated

parts of the triangle are correct. The derivation of the equation

follows.

a sin a 6 sin /T - . N

(Law of sines.)
c sin 7 c sin 7
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a b _ sin a - sin

c sin 7

2cosK + 0)M(*-0) , &71 *--v=
2 sin |T cos ^7

(71 '
' 5)

But \(a + 0) = 90 - |T and cos J(a + 0) = sin h- (12)

Therefore, on cancelling equal factors, we have Mollweide's

equation:
a - b _ sin %(a -

(?)

C COS \y

84. Solution of plane oblique triangles.

A triangle is determined, except in such cases as will be

specially mentioned, when three parts are given, of which one

at least must be a side. The calculation of the other parts is

called
"
solving the triangle."

Four cases arise, according to the nature of the given parts.

I. Given one side and two angles.

II. Given two sides and their included angle.

III. Given two sides and an opposite angle.

IV. Given three sides.

The method for treating each case will now be considered.

85. Case I. Given one side and two angles, as a, {3, a.

Formulas for finding the other parts, 7, 6, c.

7 = 180 -
(a + 0).

From the law of sines,

, sin sin 7
6 = a-rZ', c = a-^ -

sin a sin a

Check. It is important to have a check on the accuracy of the

calculated parts. For this purpose use a formula not used in

the computations and involving as many as possible of these

parts.

In this case we use the law of tangents in the form :

(b 4- c) tan J(j8
- 7) =

(6
-

c) tan $(/3 + 7).

We might also use Mollweide's equation.
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Example.

Given a = 400, a = 50, ft
= 100. To find 6, c, 7.

Graphic solution.

This will give us a fair idea of what answers to expect. First calculate

7 = 180 -
(50 4- 100) = 30. Lay off a line segment equal to a and

at its extremities construct angles ft and 7, prolonging their free sides

to meet at A (figure). Scale off the lengths of 6 and c. We find b = 520

and c = 260 approximately.

400

FIG. 63

Logarithmic solution.

Formulas.

7= 180 -
(a +0).

b = a -
; log b = log a 4- log sin ft log sin .

sin a
~

c = a .
-

; log c = log a 4- log sin 7 log sin .

Sill a

CTecfc. (6 4- c) tan J(0
-

7) =
(&
-

c) tan J(fl 4- 7).

log (b 4- c) 4- log tan $(ft
-

7) = log (6
-

c) 4- log tan \(ft 4- 7).

The detailed solution follows. Four-place tables are used.

Given: a = 400, a = 50, ft
= 100.

Angle y. a = 50.
= 100

a + = 150. 180 - 150 = 7 = 30.

Side b. Side c.

loga= 2.6021 loga= 2.6021

log sin ft
= 9.9934-10 log sin 7 = 9.6990-10

12.5955-10 12.3011-10

log sin a = 9.8843-10 log sin a = 9.8843-10

log b = 2.7112 logc = 2.4168

b = 514.3. c = 261.1.
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Check. b + c = 775.4 b - c = 253.2
- 7 = 70 + 7= 130

Ktf-7) = 35 i(0 + 7) = 65

log (6 + c)
= 2.8895 log (b

-
c)

= 2.4034

log tan J(
-

7) = 9.8452-10 log tan J(0 + 7) = 0.3313

sum = 2.7347. sum = 2.7347.

EXERCISES 39

In the figure of 47 calculate AD and BD from the following data.

7. ;/i = 350ft., a =40, = 70.

8. m = 228.3 ft.,
= 27 33', = 41 7'.

9. 7/1 = 744.7 ft., a = 37 45.3', = 81 21.6'.

10. In Exercise 15 of 49 find the distance from each point of observa-

tion to the top of the tower.

11. In Exercise 16 of 49 find the distance from each point of observa-

tion to the top of the tree.

12. In Exercise 3 of 56 calculate the distance from ship to lighthouse
at the time of each observation.

86. Case II. Given two sides and the included angle, as a, b, 7.

To solve the triangle we calculate $(a + ff) as the complement

of -|7 ;
then (

-
0) is calculated by formula (3). Angles a

and /5 are then determined and hence all the angles are known.

We can then compute c in two ways by means of the law of

sines. The agreement of the two values of c furnishes a check

on the computations.

Formulas.

J( + 0) = 90 -
fr.

tan J(
-

0) ^^ tan %(a + 0).

sin 7 , sin 7 . i

c = a - - = b - 3- Check,
sin a sin p
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Check. Duplicate calculation of side c.

Or use Mollweide's equation.

Example.

Given 6 =
12.553, a = 20.635, 7 = 27 24. 2'. Solve the triangle.

C 12.5+ A

Fia. 64

Graphic solution.

Construct angle 7 and on its sides lay off lengths a and 6, starting

from the vertex. Complete the triangle, and measure c, ,
and ft.

We obtain c = 11.0, <* = 119, ft
= 33. A solution is possible provided

< T < 180.

Logarithmic solution.

Formulas.

j(+0)-90- fry.

log tan }(
-

0) = log (a
-

6)
-

log (a + 6) + log tan J( + 0).

log c = log a -f- log sin 7 - log sin .

log c = log b + log sin 7 log sin 0.

The detailed solution follows. Five-place tables are used.

Angles a and ft.

7 = 27 24.2'. fry
= 13 42.1'.

j(a + ^ = 90 - 13 42.1' = 76 17.9'.

a = 20.635 log (a
-

6) = 10.90752-10

b = 12.553 log (a+ 6) = 1.52098

a+& = 33.188 diff. = 9.38654-10

a - 6 = 8.082 log tan }(<* + 0) = 0.61295

log tan }(
-

/3)
- 9.99949-10

i( + 0) = 76 17.9' = 121 16.9'.

J(
-

0) = 44 58.0' |3
= 31 19.9'.
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Side c and check.

loga = 1.31460 log 6= 1.09874

log sin 7 = 9.66300-10 log sin 7 = 9.66300-10

sum = 10.97760-10 sum = 10.76174-10

log sin a = 9.93185-10 log sin ft
= 9.71600-10

logc= 1.04575 logc= 1.04574

c = 11.111.

Caution. Agreement of the two values of c is not a complete check;

they may agree, yet both be wrong, due to an error in log sin 7; check

this very carefully.

Check by Mollweide's equation.

a b sin ^(a- ft) / , N ,
. ,/ ^

sum - 0.89498 sum = 0.89498

NOTE. If side 6 were greater than side a, the difference a - b would be

negative, as also the difference a -
ft. To avoid negative differences in

such cases, interchange letters in the formula for the law of tangents, and
write it

b - a
tan \(ft

- a) - 7
- tan i(/3 -f a).
o -f a

EXERCISES 40

Solve the following triangles:

1. a = 800, b 895, 7 = 60.

2. a = 25.45, c - 21.60, - 52 30'.

3. a = 223, 6 402, 7 - 101 40'.

4. 6 3124, c - 8976, a - 125 32
;

.

6. b = .04544, c - .06400, a - 36 08'.

6. a = 541.83, c - 327.68, - 78 43.7'.

7. Apply the methods of this section to solve A ABC of Fig. 43, 52,

using the data there given.

8. Similarly solve A ABD of Fig. 46, 53.

9. An angle of a triangle is 40 and one of the including sides is twice

as long as the other. Determine the other two angles. Check by the law

of sines.

10. The difference of two of the sides of a triangle is 50 and the dif-

ference of their opposite angles is 30. The third angle 60. Solve the

triangle.
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87. Case III. Given two sides and an opposite angle; as a, b, a.

This is known as the ambiguous case. We begin by studying the

Graphic Solution. Lay off angle a and on one of its sides take

AC = 6. With C as center and radius equal to a, strike an arc

of a circle. The figures show the various possibilities arising in

the construction, the first three for a < 90, the last three for

a > 90.

(6)

(d)

In each case the perpendicular from C on the other side of

angle a is equal to 6 sin a. Inspection of the figures then shows

that

when a < 90 and a < b sin a, no triangle is possible;

when a < 90 and a = b sin
,
a right triangle results

;

when a < 90 and b > a > b sin a, two oblique triangles result;

when a < 90 and a ^ b, one oblique triangle results;

when a > 90 and a ^ 6, no solution is possible;

when a > 90 and a > 6, one oblique triangle results.

It is always possible therefore to state in advance what the

nature of the solution in a given case will be.

In a given numerical example the nature of the solution al-

ways becomes apparent during the progress of the computations.



GIVEN TWO SIDES AND AN OPPOSITE ANGLE 127

Formulas. Given a, 6, a.

- Q b .
., or. f , m sin 7 , sin 7

sin ft
= - sm a. 7 = 180 -

(a + ft), c = a -. - = 6 - -
a sin a sin ft

0'=180-. 7' - 180 -
(a + 00- *' = a^HLI.' = 6 !?T

~'

sm a sin j3

CAecfc. The agreement of the values of c and c' as calculated

from the two expressions for each of them furnishes a partial

check on the calculations. It does not guard against an error in

log sin 7, which may be checked independently. A more posi-

tive check is furnished by the law of tangents or by Mollweide's

equation.

In carrying out the calculations according to the formulas

abovC) the various cases shown in the figures are indicated as

fqllows:

(a) log sin ft ^ 0; no solution, or right triangle.

(b) retain both ft and 0'; two solutions.

(c) a 4- j3' > 180, hence reject '; one solution.

(d) log sin ft ^0; no solution.

(e) a + ft > 180 and a + ft' > 180; no solution.

(f) As in (c) ;
one solution.

Example.

Given a = 602.3, b = 764.1, = 38 17'.

Graphic solution.

500

FIG. 66

This is shown in the figure, from which the unknown parts may be

scaled off.
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Logarithmic solution.

Formulas.

log sin (3
= log 6 log a + log sin a. = ? /3'

= ?

T = 180- (+ 0). 7' = 180- (+ 00.

log c = log a+ log sin 7 log sin a,

= log 6 4- log sin y log sin (3.

log c' = log a + log sin 7' log sin
,

= log b + log sin 7' log sin /3'.

Check. Use duplicate calculation of side c.

The detailed solution follows. Four-place tables are used.

Angles (3, &, 7, y'.

log b = 2.8832

log a = 2.7798

diff. = 0.1034

log sin = 9.7921-10

log sin 8 = 9.8955-10

Side c and check.

log a - 2.7798

log sin 7 = 0.0000

sum = 2.7798

log sin a = 9.7291-10

log c = 2.9877

Side c' and check.

log a = 2.7798

log sin y' = 9.3698-10

sum = 2.1496

log sin a = 9.7921-10

log c' = 2.3575

= 51 50';
= 90 7';

7 = 89 63';

P = 128 10'.

/?'
= 166 27'.

y' = 13 33'.

lOg 6 :

log sin 7 =

sum

log sin /3

2.S&32

0.0000

2.8832

9.8955-10

log c = 2.9877

c = 972.0.

227.8.

log b = 2.8832

log sin y' = 9.3698-10

sum = 2.2530

log sin p' = 9.8955-10

log c' = 2.3575

EXERCISES 41

Solve the triangles whose given parts are:

6. a - 482.63, c - 550.27, a - 57 28.3'.
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88. Case IV. Given the three sides, a, b, c.

The angles may be calculated from either the sine, cosine, or

tangent of the half-angles. When all three angles are wanted,

it is best to use the tangent. There is no solution when one side

equals or exceeds the sum of the other two.

Formulas.

r = 0,)(S b)(s
-

x 1
'

j. 1 r*
I

A. 1 '

tan 4o: =
;

tan p =
rj tan 7 =

s a s b s c

Check. ( + + 7) = 90; a + + 7 = 180.

Example.

Given a = 428.63, 6 = 806.26,

c = 542.45.

Graphic solution.

This is shown in the figure. By
measuring we find = 29, = 112,

7 = 38.

Logarithmic solution.

Formulas.

log r = Clog (s
-

a) + log (s
-

b) + log (s
-

c)
-

log s].

log tan J
= log r log (s a) ;

log tan i = log r - log (5
-

6) ;

log tan 37 = log r log (s c).

Check. K + + T) = 90. + + 7 = 180.

The detailed calculations follow. Five-place tables are used.
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NOTE. The four numbers s, s - a, s - 6, s - c add up to 4s - (a -f 6 + c)
= 4s - 2s = 2s. This checks the numerical work at this stage.

Students who wish to use the cologarithm may write

log r -
-2 [log (s a) + log (s b) + log (s c) 4- colog s].

This makes the computation a little more compact.

EXERCISES 42

Solve the triangles whose given parts are:

1. a = 112, b = 86, c = 98.

2. a = .6852, b = .6284, c = .6066.

3. a = 55.33, b = 30.33, c = 39.30.

4. a = .00150, 6 = .00181, c = .00294.

6. a = 1626, b = 1448, c = 3075.

6. a = 3.2265, b = 2.0842, c = 1.8187.

89. Areas of oblique plane triangles.

Referring to the figures of 78, we sec that h is the altitude

drawn on side c as base. Hence if K denotes the area of the

triangle, we have

(8) K =
|ftc

= |ac sin ft. (h = a sin ft.)

Hence, the area of a plane triangle equals half the product of two

sides by the sine of their included angle.

The area is also expressible in simple form in terms of the sides.

In the formula above replace sin ft by 2 sin \ft cos \ft. Then

K = ac sin J/3 cos \ft

V
(s
-

a)(s
- c) MS 6)

ac i ac

by (4') and (5') of 82. Hence,

(9)
t

K = Vs(s - a)(s
- b)(s -

c)
= rs.

When the given parts of the triangle are such that neither of

the above formulas applies directly, it is usually best to calcu-

late additional parts so that one of these formulas may be used.
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In any triangle ABC, whose sides, opposite angles a, /3, 7, respectively,

are a, 6, c, show that:

41. b(s
-

b) cos2 ~ = a(s -a) cos2
~-

i &

42. a * 6 cos 7 + c cos /3.

43. (a - 6)(1 + cos 7) = c(cos - cos a).

cos a cos |8 cos 7 _ a2
-H fr

2 + c
2""

45. (6 + c - a) tan
I

=
(c + a -

6) tan -

46. (6 4- c)(l
- cos a) = a(cos + cos 7).

47. (a
* _ 52 + C2) tan ft

= (0
2 + 52 _ C

48. cot ^ + cot + cot ^ = cot ^ cot 5 cot ~
L A L t & &

49. The radius of the inscribed circle is
1(8- 0)(8

-
b)(8

-
C)

8

60. The diameter of the circumscribed circle is a esc a.

61. Find the lengths of diagonals and the urea of a parallelogram two
of whose sides are 5 ft. and 8 ft., their included angle being 60.

62. Two adjacent sides of a parallelogram are a and 6, their included

angle 7; show that the area is ab sin 7.

63. The sides of a triangle are in the ratio of 2 : 3 : 4; find the cosine

of the smallest angle.

64. The angles of a triangle are as 1 : 2 : 3; the longest side is 100 ft.;

solve the triangle.

55. The angles of a triangle are as 3 : 4 : 5; the shortest side is 500 ft.;

solve the triangle.

66. The sides of a triangle are 4527, 7861, 6448; find the length of the

median drawn to the shortest side. Ans. 6824.

67. In A ABC, a - 466, 6 572, c - 321. Calculate the shortest alti-

tude. Ans. 261.5.

68. In A ABC, a - 336, b = 215, c = 252. Calculate the length of the

shortest median.

Exercises 5&-90, which follow, are problems in
"
Heights and Distances/'

so-called; they indicate some of the applications of Trigonometry to men-
suration.

For example, the figure of Exercise 59 is a general figure applying to

such problems as are illustrated by Exercises 71 and 72 below. The figure

of Exercise 70 applies to such problems as appear in Exercises 82 and 83,
which represent actual observations of the flight of an airplane and of a
meteor respectively.

In the figures, x, the unknown, is to be expressed in terms of the other

parts, which are regarded as being given by measurement. Right angles
are indicated by a double arc. In each case assume a set of numerical
values for the given parts and calculate the numerical value of x.
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See (47).

B C

sin a sin ft

sin (ft
- a)

X - ra-

ni B

sin |8 sec a

cos (a + j3)

(AC - m sec a; Z ADC = 90 -

(a +/3); then apply law of sines to

A ACD. Or, take x = BD - BC.)

61. 62.

AX B C

x = m esc 2.

(Note that A ABD is isosceles.)

x = ??i cos a esc cos (a + /3

(First find AC in A ACD.)

63. x = BC + CD,
C = m sin a,

CD = (n - m cos a) tan (a -f /

or, x = BF + FD,
BF = n tan

,

FD = (n sec a - m)
sin (3

cos (a + ft)

64.
sin sin ft Ptan (/3 -f 7)

sin (0 -
) L tan /3

sin a sin 7
sin (/3

- a) cos (ft -f 7)

(First find CD as in Ex. 59; then BC,
then CE\ then x ~ CE - CD. This gives
first form; reduce to second form.)
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66. x =
^ [cot a Vcot2 -8].

(Two solutions).

(Let Z BAC = 0; then tan p = -, and

tan (a + fl)
=

; expand tan ( + j3); sub-

stitute value of tan 0, and solve for x.)

66.

x = cot
"

1

(
-

4- cot <* )

\a /

67.

* i= tan"1
I

B

-
.

\a cot a/

(Note that tan (x + a) = (a + b) + AB.)

68.

B b

x a cot ( tan"1 T -
J
-b.

(x -f 6 = a cot A; A = tan" 1 r -

A

Given Z Z CAD.

x = a -

70.

CD is to plane of A ABC;

a and are ^ of A ABC;
7 and 5 are ^ in vertical

planes.
sin /3 tan 7

sin a tan 6
x - m-:

j
sin (
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71. From a level plain, the angle of elevation of a distant mountain top
is 5 50'; after approaching 4 miles, the angle is 8 40'; how high is the

mountain?

72. From a point on level ground the angle of elevation of the top of a
hill is 14 12'; on approaching 1000 ft., the angle is 17 50'; how high is

the hill? Ana. 1186ft.

73. From level ground the angle of elevation of the top of a hill is

11 30'; after approaching 3000 ft. up an incline of 3 27', the angle of ele-

vation of the top is 21 32'; how high is the hill?

74. From a point 60 ft. above sea level the angle between a distant ship
and the sea horizon (the offing) is 20'; how far away is the ship? (Consider
the surface of the sea as a plane, and the distance to the horizon 10 miles.)

Ans. 8640 ft.

75. A tower 100 feet high has a mark 40 feet above the ground. How
far from the foot of the tower will the two parts subtend equal angles?

76. A column 12 feet high stands on a pedestal 8 feet high. How far

from the foot of the pedestal (and in the same horizontal plane with it)

will column and pedestal subtend equal angles?

77. A flag pole 30 feet high, standing on ground which slopes upward
at an angle of 20, casts a shadow 50 feet long and extending directly

down the hill. What is the altitude of the sun?

78. The angle of elevation of the top of a building 100 ft. high is 60;
what will be the angle at double the distance?

79. From a station on level ground due south of a hill, the angle of

elevation of the top is 15; from a point 2000 ft. east of this station the

angle of elevation is 12; how high is the hill?

80. On level ground, 250 ft. from the foot of a building, the angles of

elevation of the top and bottom of a flag pole surmounting the building
are 38 43' and 31 2' respectively; find the height of the building and the

pole.

81. A flag pole on a building subtends an angle of 7 40' at a point on
the ground 100 ft. from the building; on approaching 20 ft., the pole
subtends an angle of 7 50'; find the height of the pole and the building.

82. To determine the height of an airplane, simultaneous observations

from two stations were made as follows (see Ex. 70): m = 6236 ft.; a =

72 12',
= 74 10', 7 = 9 24', 6 - 9 37'. Show that the average of the

two values of h is 1803 ft.

83. To determine the height of a meteor, simultaneous observations

from two stations were made as follows (see Ex. 70): m = 18.3 miles;
a - 56 35',

= 104 30', 7 - 53 50', 5 = 56 45'. Show that the average
of the two values of h is 72.0 miles.

84. On approaching 1 mile toward a hill, the angle of elevation of its

top is doubled; on approaching mile more, the angle is again doubled;
how high is the hill? A ns , j >/7 mi.

85. A building surmounted by a flag pole 20 ft. high stands on level

ground. From a point on the ground the angles of elevation of the top
and the bottom of the pole are 53 5' and 45 11' respectively. How high
is the building?
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86. A and B are two points neither of which is visible from the other.

To determine the distance AB, two stations C and D are chosen and the

following measurements made: CD = 500.0 ft.; Z ACD - 30 25' 15*;
Z. ACB - 85 40' 20 "; Z BDC = 35 14' 50 "; Z BDA - 80 20' 25 "; find

AB. Ans. 969.2 ft.

87. In a chain of three non-overlapping triangles, the following data

are known: AB = 1000 ft

A ABC, A ACD, A CDE,
Z A = 44 36', Z A == 56 32', Z C = 55 30',

ZC=400'; ZC=5020'; Z# = 7702';
calculate DE. (Express DE in terms of AB and the necessary angles by
the law of sines.)

88. In a chain of four non-overlapping triangles, the following data are

known: AB = 11,289 meters.

AABC, ACBZ), ADBE, ADEF,
ZA =58 10' 35", ZB = 8650'0", ZZ) = 79 12' 8", ZD -50 41' 5",

ZB =6955'0"; ZC =4648'0"; ZB = 7329/

10"; Z# =45 20' 40";
calculate EF. Ans. 19955m.

89. The adjacent figure

shows a chain of four tri-

angles in which all the an-

gles, and AB = ?n, are

known. To designate the

angles we use Ci, C2 ,
C3 for

the three angles at C, arid

similarly for the other ver-

tices. Calculate in turn Xi,

#2, 3, #4, and show that c

_ sin Ai sin B2 sin Cs sin #4

sin Ci sin D* sin E* sin F4

(Exercise 88 gives such a chain of triangles taken from the Transconti-

nental Triangulation of the U. S. Geodetic Survey.)

90. A tower 50 ft. high stands on the edge of a cliff 150 ft. high. At
what distance from the foot of the cliff will the tower subtend an angle of

5? Ana. 59. lor 513 ft.

91. A right triangle whose perimeter is 100 ft. rests with its hypotenuse
on a plane, the vertex of the right angle being 10 ft. from the plane. The

angle between the plane of the triangle and the supporting plane is 30.
Find the sides of the triangle.

92. The sides of a triangle are 100, 150, 200 ft. At the vertex of the

smallest angle a line 100 ft. long is drawn perpendicular to the plane of the

triangle. Find the angles subtended at the farther end of this line by
the sides of the triangle.

93. An equilateral triangle 50 ft. on a side rests with one side on a plane
with which its plane makes an angle of 60. How far is the third vertex

from the plane?

94. As in exercise 93, if the triangle, instead of being equilateral, has

sides 40, 20, 30 ft. and rests on the shortest side. Ans. -
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95. The sides of a triangle are as 4:2:3, and the longest median is

10 ft. Find the sides and angles.

96. The following measurements of a field ABCD are made: A to B,
due north, 10 chains; B to C, N. 30 E., 6 chains; C to Z>, due east, 8

chains; calculate AD, and the area of the field in acres. (1 chain = 4 rods.)
Ans. 18.76 ch.; 7.578 A.

97. The following measurements of a field ABCDE are made: A to B,
due east, 25.52 chains; B to C, E. 40 26' N., 22.25 chains; C to D, N. 48
26' W., 33.75 chains; D to E, W. 31 15' S., 18.32 chains; calculate EA
and the area of the field in acres.

98. In the field of exercise % how much area is cut off by a line due
east through Bl Ans. 3.62 acres, south of dividing line.

99. In the field of exercise 97 where should an east and west line be

drawn so as to bisect the area?

100. In the field of exercise 97 where should a north and south line be

drawn to cut off 30 acres from the western part of the area?

Ans. 10.892 ch. east of A.

101. If P be the pull required to move a weight W up a plane inclined

to the horizontal at an angle /, and n the coefficient of friction, then

p =
cos i n sin i

Calculate P when W = 1000 Ibs., / = 30, M = 0.1.

102. In exorcise 101, what is i if P - %W and M = 0.1? Ans. tan"1
&-.

103. If I be the length of a plane inclined to the horizontal at an angle i,

fji the coefficient of friction and g the acceleration due to gravity (32+ ft.

per sec. per sec.) the time in seconds required by a body to slide down the

plane is

r =
i 0(sin i - /u cos i)

What is T when / = 25 ft., i = 20, M = 0.1?

104. In exercise 103, find i when I = 100 ft., M = 0.1, T = 5 sec.

Ans. 20 7'

105. When light passes from a rarer to a denser medium,
the index of refraction /u is determined by the equation

sin 7*

sin r

When fj.
=

1.2, what must be i (angle of incidence) to give /

a deflection of 10? ./

106. Find the total deflection of a ray which passes through a wedge
whose angle is 30 and index of refraction 1.4, if the ray enters the wedge
so that the angle of incidence is 25, and moves in a plane J_ to the edge
of the wedge. Ans. 12 32'.

107. Solve exercise 106 when the angle of the wedge is <*, the angle of

incidence i, and the index of refraction M.



CHAPTER

IX INVERSE FUNCTIONS.
TRIGONOMETRIC
EQUATIONS.

91 . Inverse trigonometric (unctions.

Before preceding with this section the student should review

thoroughly 36, where the inverse trigonometric functions and

their principal values are defined and illustrated by examples.

Notation.

(a) As in 36, when we write the symbol for an inverse func-

tion with the first letter capitalized, such as

Arc sin ^, Arc tan 1, Sec" 1

(-2),

it shall be understood that the principal value is meant.

Thus: Arc sin J
= 30, Arc tan 1 =

J See- 1
(- 2)

= 120.

(b) The non-capitalized form shall indicate the general value

of an inverse function. So the symbols

arc sin J, arc tan 1, sec"1

(-2)

mean, in each case, the whole set of angles corresponding to the

given function value.

Thus: arc sin \
= ~ + 2mr and -r + 2mr]

arc tan 1 = T + 2nw and - -r + 2n7r;
4 4

sec"1

(- 2) = -~ + 2n7r and - ~ + 2mr.

138
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(c) When a special notation has not been defined it is neces-

sary to state explicitly in each case whether the general value

or the principal value is meant. Thus:

6 = the general value of arc tan 2;

a = the principal value of arc tan 2.

Where inverse trigonometric functions are used in other fields

of mathematics the reader is often left to decide for himself

what meaning to attach to the inverse function symbol.

By use of the definition of principal values the student should

check carefully the following statements.

(1) When x is positive, the principal value of each of the six

inverse functions,

Arc sin x Arc tan x Arc cos x

Arc esc x Arc cot x Arc sec x

lies between and ^, inclusive of one or both of these values.

(2) When x is negative, the principal value of

Arc sin x

Arc esc x

lies between and -
~, in-

clusive of one or both of

these values;

the principal value of

Arc cos x

Arc sec x

lies between ^ and TT, inclu-
Zi

sive of one or both of those

values.

These statements are represented schematically in the ad-

jacent diagram.
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92. Graphs of the inverse trigonometric functions.

If in the equation y = arc sin x we solve for x we obtain x =

sin y. The two equations are equivalent in that they express

exactly the same relation between x and y. Therefore we shall

study the graph of the equation x = sin y.

We may start with the equation y = sin x, the fundamental

sine wave. Interchanging x with y gives x = sin y, the inverse

function equation.

Therefore we obtain the graph of y = arc sin x by merely

interchanging the letters on the coordinate axes in the graph of

y - sin x.

-i o i -i o i -1 1

y=cos x y=cot x

FIG. 68

y = sec x

The graphs of the other inverse functions are related similarly

to the corresponding direct functions.
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In the figures the principal values are shown by the parts of

the curves drawn in the full lines.

93. Examples.

. . V2
1. The principal angle whose sine is ~- = ?

Arc sin ( -^r )
= 45 = -

V2
2. The principal angle whose sine is ~- = ?

(\/2\
if

-^ J
= 45 =

A"

3. The principal angle whose secant is 2 = ?

Sec- 1

(2)
= 60 = vo

4. The principal angle whose secant is 2 = ?

Sec-1 (- 2) = 120 =
o

6. The principal angle whose cotangent is V5 = ?

Cot-1

(- V3) = - 30 = -

6. The principal angle whose cosine is 0.8382 = ?

Arc cos (- 0.8382) = 180 - 33 3' = 146 57'.

7. tan (Arc sin 0.5) = ?

We have to find the tangent of the principal angle whose sine is 0.5.

That is, if y = Arc sin 0.5, we have to find tan y.

Solution. From y - Arc sin 0.5 we have sin y = 0.5 = -|. Also,

y is in quadrant I. Therefore, taking ordinate =
1, distance = 2, we

obtain abscissa = V. Then

tan y = =
-\ tan (Arc sin 0.5) = --

V3 & *

In this example it happens that y = 30, so that we get immediately

V3
tan y = tan 30 =

-5-. But we can solve the problem without usingo

the value of the angle.
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8. tan (arc sin 0.5) = ?

We have to find the tangent of any angle whose sine is 0.5. That is, if

y = arc sin 0.5 we have to find tan y.

Solution. Proceeding as before we find abscissa = V3.

V3
tan?/ :

-7=
= --; tan (arc sin 0.5) =

v3

9. tan Arc sin f = ?

Let y = Arc sin f; sin T/
=

?; y in quadrant I.

Ordinate = 2, distance = 3; abscissa = V.
2 2V5 A A . 2 2V5

tan i/
= - = =:- ;

tan Arc sm ~ = =

v5 o o o

(2\
2V5

arc sin - 1 = .

10. tan Arc sin (- f )
= ?

Let y = Arc sin ( f ) ;
sin y =

| ; ?/ in quadrant IV.

Ordinate = 2, distance = 3; abscissa = \/5.

. A
. / 2\ 2 2V5

tan ?/
= tan Arc sm

( ^ ]
= --= = --=

\ i/ v'5 *>

11. sec Tan-1 2 = ?

Let ?/
= Tan"1

2, or tan ?/
= 2; ?/ in quadrant I.

Take ordinate = 2, abscissa = 1
;

then distance = VB.

sec y = sec Tan"1 2 = V5.

We might also write

sec y = Vi + tan2
?/
= Vi + 4 = Vg.

12. sec (2 Tan-1
2) = ?

We have to find the secant of twice the principal angle whose tan-

gent is 2.

Let y = Tan-1
2; tan y = 2; y in quadrant I.

To find sec 2y we first obtain cos 2y = cos2
// sin2 y.

I 2
From tan y = 2 we find cos y = sin y =

V5 V
cos 2?/

= I
-

| = -
f; sec 2?/

= -
f .
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13. cos jSec-
1
(- 3) = ?

Let y = Sec-1
(-3); sec y = -

3; y in quadrant II.

We must find the value of cos |v/, the angle \y being in quadrant L

. ll -f cos y ,
11

cos iy - + and cos y = -- -.

x/3
Therefore cos i?/

=
-^-

= cos jSec"
1

( 3).
o

94. EXERCISES 44

In Exercises 1-20, state the exact value of the principal angle in degrees
and radians. Also state the general value of the angle.

\/3 11. sin-1
1.

*' aro <*-2" 12. sec-1.

=\ 13. arc sec - -?=\
V3/

3 ' ""-'(-D- 14. esc- 4-
4. arc tan \/3.

V3

6. sec' 1 2. 16. cot"1 0.

6. arc cos (-1). 16. arc cot (-

7. arc esc (- 2). 17. coir1 Vs.

8. cos- 1

(- J). 18. esc-1
1.

9. arc tan 19. arc sin
(^-

10. arc tan (-1). 20. tan-1 0.

In Exercises 21-40 obtain the principal angle to the nearest minute.

21. Arc cos 0.2. 28. Sec' 1

(-4). _ 36. cot- (2 -
\/5).

22. Tan' 1

(- 3). 29. Tan- (1 + V2). 36. Arc esc 2.5.

23. Sec- V3. 30. Arc sin (J). 37. Tan- (- }).
__

24. Arc sec 4. 31. Cot- (- J).
38. Csc"1

(1
- vx

5).

26. Cos- 1

(- 0.6). 32. Sin- ( V3 -
1). 39. Arc sin 0.8.

26. Cos-(l-V2). 33. Arc cot (|). 40. Csc-(-l.o).
27. Arc tan 3 34. Sin-(-|).

In Exercises 41-60 obtain the exact numerical values.

41. sin Arc tan 3. 48. cos 2Sin- 0.8. 65. cot ^tan- J/.
42. sin 2Tan- 3. 49. sin |tan- i 66. cos Arc cos 0.3.

43. cos Jsin"
1 0.6. 60. sec Arc sin (f ). 67. cos 2Cot- 0.6.

44. tan Arc tan 3. 61. tan 2Sec- 1.5. 68. esc ^sec- 2.

46. sec 2Cot 2. 62. sec Jcos ^V- 59. cot Arc sec 1.5.

46. tan |tan- 1. 63. tan Arc esc 2. 60. sin 2Sin 0.6.

47. cos Arc cot 2. 64. cot 2Cos- 0.6.
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95. Equations involving several inverse (unctions.

Example 1.

Show that Arc sin f = Arc cos .

Let a = Arc sin f ;

= Arc cos J.

Then sin = f ;
cos =

f.

To prove that =
0,

or that sin a = sin (3.

(The sine function is used for convenience; any other function might
be used.)

From cos =
| we obtain sin = Vl cos2 = f .

Therefore sin = sin 0, and also =
0, since a and are both acute

angles.

Example 2.

Show that Tan-1 2+ Tan-1 3 = 135.

Let a = Tan" 1
2;

= Tan- 1 3.

Then tan a = 2; tan = 3.

To prove that + = 135;
or that tan (<*+ 0) = tan 135 = - 1.

n - / , N tan 4- tan 2+3 1

Proof, tan ( + 0) =
^

r
-~ = z ^-73

= - 1.^
1 - tan a tan 1-2-3

Therefore a 4- = 135, since and are positive acute angles and

tan (+ 0) = - 1.

Example 3.

Show that Sin-1
f + 2 Tan-1 2 = *-.

Let x = Sin-1
f; y = Tan-1 2.

Then sin x =
5 ;

tan y = 2.

To prove that x 4- 2t/
=

TT,

or that 2y = ir x,

or that sin 2y = sin (T
-

x) = sin a; = j.

From tan y = 2, and the fact that ?/ is a positive acute angle, we find

XT. x 2 J !
that sin y = p and cos ?/

= -

v5 v5
Then sin 2y = 2 sin y cos ?/

= t = sin x.

Example 4.

Show that Tan-1
f + Tan-1 2 + Tan*1 8 = x.

Let x - Tan-1
f ; y - Tan'1

2; 2 = Tan-1
8;

then tan x f ; tan /
- 2; tan - 8.
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To prove that x + y + z -
TT,

or that + y = * -
2?,

or that tan (x + y) = tan (TT
-

z) = - tan 0.

AT / , \ tan x 4- tan T/ f + 2
Now tan (x -f- 2/)

=
^ , .

=
f-

2 = - 8 = - tan z.*
1 - tan x tan y I - %

Example 5.

Show that Tan"1 a = Sin"1
... when a is positive.

Vl + a2

Let x = Tan"1 a and ?/
= Sin"1

;

then tan x = a and sin ?/
=
Vl + a2

"

To prove that x =
y,

or that sin x = sin ?/.

Now since x and y stand for principal values, and a is positive, both

angles are in the first quadrant.

Then from tan x = a we find

a
sin x = ==- >

Vl + a2

which is sin ?/.

96. EXERCISES 45

Verify each of the equations below.

1. Arc tan * = Arc cos
-, ff

. 7. Cot" 1 2 + Csc" 1 VlO = 4,
r).

^ . . 3 A . 4 7T V/7
^ V'}

2. Arc sin - + Arc sin
g
=
^ 8. Sirr 1

-^ + 2 Cos" 1 -~ = 120.

3. Arc sin f = Arc tan J. 9. 2 Arc tan 4 + Arc sin ^ = TT.

4. Arc tan + Arc tan J
= 45. IQ. 2 Arc cot 2 = Arc sec |.

6. 2 Tan" 1

f = Tan" 1 Y- H- 3 Sin" 1 -1 = Sin" 1

{ J .

6. Tan" 1

(-3) Tan" 1 2 - 12. 4 Tan" 1

^
= Tan" 1^ +

4 o ^oy 4

13. Arc tan ^| + Arc tan f + Arc tan (- f )
= TT.

14. Sin"1
f + Sin"1

-fr + Sin" 1 1
1
=
|

16. Arc cos 5|+2 Arc tan -|
= Arc sin f .

16. 2 Tan'1
f - Csc" 1

f = Sin" 1

J j.

17. Sin" 1 a = Cos"1 Vl - a2
,

if a > 0.

18. 2 Tan"1 m = Tan"* -^~
1 - /?i

19. 2 Tan-' (cos 29) - Tan-

NOTE. The equation of Exercise 12 was used to calculate the value of

TT to 707 places. (See American Mathematical Monthly, vol. 31, page 393,

1924.)
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97. Trigonometric equations. Special methods.

In 41 we solved some trigonometric equations, following a

rule there stated and using the formulas of group A. This

section should now be reviewed.

We now have at our disposal all the formulas of the other

groups and shall illustrate by some examples how they may be

used to solve trigonometric equations.

Example 1.

2 sin2 x - 3 sin x cos x = 1.

Since 2 sin2 x 1 cos 2x and 2 sin x cos x = sin 2x, we have

1 cos 2x
-2

sin 2x = 1, or tan 2x = f .

Hence 2x = tan-1
(- f )

= - 33 41'+ n 360, or 146 19'+ n 300.

x = - 16 50.5' + n 180, or 73 9.5' + n 180.

Exercise. Check these answers. Solve the given equation by express-

ing cos x in terms of sin x.

Example 2.

sin 3?/ sin 2y - 0.

By formula (24) of 75 this becomes

2 cos fy sin \ij
= 0.

Hence cos \y = or sin %y = 0; fy = cos"1

0, or ^?/
= sin*1 0.

y = | cos-1 = |(90 -f n 360) or f (- 90 + n 360) = 36 + n 288

y = 2 sin"1 = 2 riTr - n 360.

Example 3.

cos z + cos 3x + cos 5x = 0.

Since cos x 4* cos 5# = 2 cos 3x cos 2x,

we have 2 cos 3x cos 2o: -f cos 3# = 0, or cos 3#(2 cos 2x + 1) = 0.

Hence cos 3x =
0, or cos 2x =

-; 3# = cos"1
0, or 2x = cos"1

( J).

x = cos-1 = i(90 4. n360) or |(- 90+ n360) - 30 -f- n-120

x = ^ cos-1
(- J)

= J( 120 + n 360) = 60 -f n 180.

Example 4.

sin 3:r = cos 5x.

Change 5x to the complementary angle 90 5x:

sin 3x == sin (90
-

5z) ;
sin 3x - sin (90

-
5x) = 0.
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Use formula (24), 75, to change to a product:

90 - 5x . 3z - 90 + 5x A2 cos--- sin-~- =
0,

2 cos (45
-

x) sin (4x
- 45) = 0.

Equate each factor to zero :

cos (45 -
x) =

0, or sin (4x
- 45) = 0.

The first factor gives

45 - x = cos- 1 = 90 + n 360.

x = - 45 - n 360 or 135 - n 360.

(The term n 360 may also be written + n 360, since n stands for

any integer, positive or negative.)

The second factor gives

4x - 45 = arc sin = n 180.

x= 11 15' + n. 45.

Check. Both sets of answers check.

NOTE. The equation esc 3a; sec 5.c may he changed to sin 3x = cos 5x

by taking reciprocals.

Example 5.

tan 40 tan 50 = 1.

sin 40 sin 50
'

. r . 4n . f ~
-------- = l

;
cos 40 cos 50 sin 40 sin 50 = 0.

cos 40 cos 50

cos (40 + 50) = cos 90 = 0; 90 = 90 -f n 360.

B = 10 + n-40.

We must rule out any values of such that cos 40 = or cos 50 = 0,

because these occur as divisors in the given equation.

Exercise. Cheek the answers for several selected values of n.

Example 6.

4 sin + 3 cos = 2.

We might reduce to sin or cos and proceed according to the rule

of 41, Example 4. A method much preferred in practice is as follows.

In place of 4 and 3 introduce two new constants m and M such that

4 = m cos M. , m = v7
42 + 32 =

5,
whence

3 = w sin If; M = tan-1
!.

The given equation then becomes

5(sin cos M -f- cos sin M) = 2 or sin (0+ M) = f .

+ M = sin-1
1, or = sin-1

f
- M.

e = sin"1
f tan*1

f .
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Exercise. Given a sin + b cos = c.

Show that the general solution is

i
c A i

&
6 = sin" 1

.
.. tan"1

Vtf + 62 a

Indicate some values of o, 6, c for which there would be no solution.

98. Graphic solutions.

Such solutions, even when they are only rough approxima-

tions, are often very useful. Moreover, an approximate value

may be corrected by successive trials to any desired degree of

accuracy.

Example 1.

Solve graphically: sin 26+ sin 0+ } = 0.

We want the values of 6 which reduce the expression

sin 26+ sin 0+ i to zero.

Let y = sin 20 -f sin 6 + ?

Calculate y for a series of values of 0, as 6 = 0, 10, 20, . . .
,
and

plot the points (0, y) in rectangular coordinates. The resulting curve

-1

H h-

90

i
i i r

180

FIG. 69

r f i \i

270" 360

will show the approximate values of for which y is zero. Any con-

venient scales may be used on the axes of and y.

Let the student read off the required solutions from the graph.
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NOTE. If the number $ in the given equation is changed, let us say, to

1J, the effect on the graph will be to raise the entire curve one unit; the

same effect could be produced by lowering the angle scale one unit.

EXERCISE

By means of this graph solve the equations

(a) sin 26 -f sin + 1.5 = 0;

(b)

(c)

(d)

sin 20 + sin - 0;

sin 20 + sin = 1;

sin 20 + sin =
}.

Example 2.

Solve graphically: tan x =
Jx, (x in radians).

(a) Draw the graph of

y = tan x.

(b) Draw the graph of y = \x.

(c) Note the points where

these graphs intersect. The

values of x at these points are

the required solutions. The

figure indicates x = and

x = 4.3 radians.

Z
/

FIG. 70

Example 3.

Solve graphically: E - 0.9 sin E - v
This is an example of

"
Kepler's Equation," a basic equation in the

calculation of the position of a planet in its orbit. Angle E is assumed

to be in radian measure.

We may solve the equation for sin E:

sinE III
0.9

'

(a) Draw the graph of y = sin E.

(b) Draw the graph of y -
^-^u y

/
1

90 180

FIG. 71

The first graph is the fundamental sine wave; the second is a straight

line. This line was obtained by locating two points on it by use of

equation (b) which gives y = - 1.15 when E = and y
= 2.30 when

E = v. The second point is outside of the bounds of the figure.
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The graphs have but one point in common at which we might esti-

mate the value of E as about 112.

A graphic solution may be regarded as a trial value and corrected

by use of the tables. We illustrate by correcting the value of E just

found. We compare the value of 0.9 sin E with that of E -
w/'S,

and change E to make them more nearly equal.

E

112

110

108

109

108 50'

52
50
48

49

' 0.908 rad.

0.873

0.838

0.855

0.852

The new value of E is 108

use of more extensive tables.

sin E

0.927

0.940

0.951

0.945

0.947

0.9 sin E

0.834

0.846

0.856

0.850

0.852

Diff.

+ 0.074

+ 0.027
- 0.018

+ 0.005

0.000

50'. This could be further corrected by

EXERCISES

Solve graphically. Check and correct by use of tables.

1. 3 tan x - 2z. 4. 3 cos x = 2x.

2. 2 sin x = x. 6. 0.8 sin x = x -
7T/3.

3. 3 sin x = 2x. 6. 0.5 sin x = x - 30.
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99. Polar coordinates.

We have made repeated use of the system of rectangular

coordinates, in which the position of any point in the plane is

defined by its abscissa and ordinate. A second system of co-

ordinates defines the position of a point with reference to a

single fixed line, called the initial line, and a fixed point on this

line, called the origin or pole.

FIG. 72

In the figure, let OX be the initial line and the pole. We
shall consider OX as the positive direction of the initial line.

Let P be a point in the plane. The position of P is then

fixed by its distance OP = r from 0, called the radius vector,

and by the angle XOP =
6, called the vectorial angle. Then r, 6

are called the polar coordinates of P, and the point is indicated

by (r, 6). Similarly Pi is the point (n, 0i). The coordinate 6 is

positive when measured counter-clockwise from OX; r is posi-

tive when measured from along the terminal side of 0; it Ls

negative when measured from along the terminal side of 6

produced back through 0. Thus the points (5, 30) and (- 5,

210) coincide. Similarly with (- 3, 135) and (3,
- 45).

151
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100. Relation between polar and rectangular coordinates.

Let be the origin and OX the initial line of a system of

polar coordinates (figure). Let OX and

OF be the axes of a rectangular system

of coordinates. Then

x = r cos 0,

~ x y >

y = r sin 0; = tan-1
1-

EXERCISES

Plot the following points:

(1,45); (-1,45); (3,60); (3,
- 60);

(4,|); (2, -y); (| ^)?

M X

FIG. 73

Calculate the rectangular coordinates of each of these points, taking as

origin and OX as the x-axis.

101. Curves in polar coordinates.

When r and 6 are unrestricted, the point (r, 0) may take any

position in the plane. When r and are connected by an equa-

tion, the point (r, 0) is in general restricted to a curve, the

equation between r and being called the polar equation of the

curve.

Example 1.

Trace the curve whose polar equation is r = sin 0.

Assume a series of values for 0, calculate the corresponding values of

r and plot the points whose coordinates are

corresponding values of r and 0.

6 = 0, 30, 60, 90, 120, 150, 180,
r =

0, 0.5, 0.87, 1.0, 0.87, 0.5, 0,

= 210, 240, 270, 300, 330, 360.

r = -
0.5,

-
0.87,

-
1.0,

-
0.87,

-
0.5, 0. o

FIG. 74a

X

The graph is shown in the figure. For values of 6 > 360, and for

negative angles, no new points are obtained. The curve is a circle, with

radius = J.
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Example 2.

Trace the curve r 20.

Here is understood to

be in radians.

7T 7T 3lT

4' 2'
6 = u

>
' '

~~

=
0, , n-,

. . .,
47

FIG. 74b
For negative values of we

get corresponding nega-

tive values of r. The curve is the double spiral in the figure, the

branches shown by the full line and the dotted line being obtained from

the positive and the negative values of respectively.

EXERCISES

Trace the following curves:

1. r = 2 sin 0. 6. r = 1 -f cos 0.

2. r = cos 0. 6. r = 2 + sin 0.

3. r = tan0. 7. r0 = 1.

4. r = sec 8. r

9. r = cos2
0.

10. r = cos 20.

11. r = 4.

12. = 7r/4

102. Complex numbers.

Let a and b denote any two real numbers and i =

More precisely, i is defined by the equation i2 = -1.

the quantity a + ib is called a complex number. It may be

considered as made up of a real units

and b imaginary units, ax 1 -f b X i.

Real numbers can be represented by

points on a straight line. To represent

complex numbers geometrically, we re-

_*. quire a plane.

Let OX and OY be a system of rec-

tangular axes, and P a point in their

plane having coordinates (a, 6) (figure). Then the vector OP
is considered to represent the complex number a -f ib, and the

extremity of this vector, P, is called the representative point

of the complex number a + ib.

FIG. 75
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When b =
0, P lies on the x-axis, and the complex number

reduces to a real number. Thus all points on the z-axis corre-

spond to real numbers, and this line is called the axis of real

numbers.

Let P (figure) be a point (z, y) in the plane, and let z be the

complex number represented by P. Then

z = x + iy.

Now take OX as the initial line and the pole of a system of

polar coordinates. Let the polar coordi-

nates of P be (r, 0).

Then

x = r cos 0; y = r sin 6.

Hence

z = x 4- iy
= r (cos 6 + i sin 6).

FIG. 76

Here r is called the modulus and 6 the angle of the complex
number z.

When r is fixed, and 6 is changed by integral multiples of 2?r,

we obtain a set of complex numbers of the form,

z = r [cos (6 + 2/i7r) + i sin (6 + 2n?r)];

n =
0, 1, 2, ....

All these numbers have the same representative point.

103. Addition of complex numbers.

The sum of two complex numbers,

z = x + iy and z' = x' + iy',

is defined by the equation

M 1 _ ^* _ [ /y 1 /-y*

*

I I <j f <) I /|f'\& i* ^ ""~
v**7

i
^ / "i *\fj i* y ) *

We proceed to consider this sum geometri-

cally. Let P, P' (figure) be the representa-

tive points of z, z' respectively. On
OP and OP' as adjacent sides construct the parallelogram

OPQP'. Then Q is the representative point of z + z'. For the

Fia. 77
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coordinates of Q are (x + x',y + y'). This amounts precisely to

vector addition of the vectors OP and OP'
',

52.

The difference of the two complex numbers z and z' may be

defined by the equation

z _ z' =
(x _ x ') 4. i(tf

-
*/').

Exercise. Give a geometric construction for the representative point
of z - z'.

104. Multiplication of complex numbers.

The product of the two complex numbers,

z = r(cos + i sin 0) and z' = r'(cos 0' + i sin 0'),

is defined by the equation

zz' = rr'(cos + i sin 0)(cos 0' + i sin 0'),

the binomials to be multiplied in the usual way; thus:

zz' = rr'[cos cos 0' - sin sin 0' + i(sin cos 0' + cos sin 0')]

= rr'[cos (0 + 0') + i sin (0 + 0')].

Therefore the modulus of the product zz
f

equals the product of the

moduli of z and z'
,
and the angle of zz' equals the sum of the angles

of z and z
f

.

By repeating this process we find

zz'z* = rr'r" [cos (0 + 0' + 0") + i sin (0 + 0' + 0")]

and so on, for any finite number of factors.

When the factors are all equal this reduces to

zn = rn (cos nO + i sin n0),

n being a positive integer.

Exercise. Show that the above definition of the product zz' is the same as

zz' = xx' - yy
f + i(xy' + x'y),

where z = x + iy and z' = x' -f- iy
f
.

105. De Moivre's theorem.

When r =
1, then 2 = cos + i sin 0. Hence by the above

result we have

(cos + i sin 0)
n = cos nO + i sin n0.

This equation contains what is known as De Moivre's Theorem.
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106. Definition of zp .

Let p be any real number, positive or negative, rational or

irrational. Then by analogy with the result for zn when n is a

positive integer, we define zp by the equation

ZP = rp (COg pQ _|. I sjn pQ^
where z = r (cos 6 + i sin 6).

Then, if q also be real, we have

z q = r <i

(cos qQ _|_ z
*

sjn ^^
and

zpz q = rp+<z[cos (p + <?)0 + i sin (p + q)6~]
= zp+q

.

All the rules for exponents will be the same when the base is a

complex number as when the base is real.

Examples.

1. Find the modulus and angle of z = 3 4i.

Here 3 = r cos 0; 4 = r sin 0.

.: r = V32 + 42 =
5, tan B = ^,o

or, 0= tan-K- f).

The angle lies in the fourth quadrant. FIG. 78

2. Express 2(cos 150 i sin 150) in the form x + iy.

2(cos 150 - i sin 150) = 2- Vg - ~ = - V3 - i.

3. Find the value of (1 + i)
2
(2
-

3i).

(l + i)
2 = l + 2i+i2 = 2z.

(1 + i)
2
(2
- 3f)

= 2i(2
-

3i)
= 4i - 6i2 = 6 + 4t.

EXERCISES 46

1. Find the modulus and angle of

z; -5-flH"; 2t; 2;

i); (3 -

Give figure for each case.

2. Find the value of:
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107. Theorem.

// P and Q are any real quantities and if P + iQ =
0, then

P = and Q = 0.

Proof. By hypothesis, P + iQ = or P = -
iQ.

Squaring, P2 = - Q2
.

Now P2 and Q2
(if not zero) must be positive, hence the last

equation states that a positive quantity equals a negative quan-

tity. This is impossible unless both quantities are zero.

/. P = and Q = 0.

This theorem is used to replace a given equation of the form

P + iQ =

by the equivalent equations

P = 0; Q = 0.

As a corollary we have, if

P + iQ = P' + iQ',

then P = P' and Q = Q'.

For the given equation is equivalent to

(P -
P') + i(Q - Q') = 0.

108. The nth roots of unity.

To solve the equation

xn - 1 =
0, or xn =

1,

replace 1 by its value cos 2kir + i sin 2kw, k being an integer.

We obtain

xn = cos 2kw + i sin 2kir.

Taking the nth roots of both members we have, by putting p = -
n

. R1_ . 2/C7T
in 106, x = cos--h ^ sin --

Here k may be any integer; letting k =
0, 1, 2,- *n 1, we

obtain n distinct values of #, that is, n distinct nth roots of 1.

For other values of k we obtain the same roots over again.
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Geometric representation of the nth roots of unity.

The nth roots of 1 are,

k = 0; xi = cos + i sin =
1,

7, 1. 27T . . 27T
# = i, #2 = cos + i sin >

n n

7. o. 4?r . . 4ir
ft = *> 3

= cos --Hz sin >

n n

7 1 2(n -
!)TT

,

. . 2(n -
fc = n 1; o:n = cos -- h t sin ~

FIG. 79

The representative points of 0*1, x^ x3 ,
xn are obtained as

n equally spaced points on a circle of radius 1, the coordinates of

the first point being (1,0) (figure).

To obtain the nth roots of any number a, we need only mul-

tiply one of its arithmetic nth roots by the nth roots of unity.

Example.

Find the cube roots of unity.

2/C7T 2/C7T

These are given by x = cos
-^-

-f i sin
;
k =

0, 1, 2.

k = 0; x l
= cos 0+ i sin = 1.

fc=l
;

z2
= Cos 120+ i sin 120- -^+| x/3-

fc = 2; x3
= cos 240+ i sin 240 = -

\
-
^V$.
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To find the cube roots of 8, we have v/8 = 2v/l = 2;
- 1 + i V3;

1 iV3. (We here use v/8 to denote any cube root of 8, not

merely the principal root.)

EXERCISES 47

1. Solve the equations a?
3 - 1 = and x3 - 8 = algebraically and com-

pare with above results.

Solve the following equations by the trigonometric method and give a

figure for each case:

2. z4
1. 4. a* = 1. 6. x6 = 1.

3. x4 = 81. 6. ^ = 32. 7. z* = 27.

109. To express sin nO and cos n0 in terms of powers of sin 9 and
cos Of n being a positive integer.

We have (cos 9 -f i sin 0)
n = cos nd -f- 1 sin n0.

Expand the left member by the binomial theorem, reduce all

powers of i to 1 or i, and group the real terms and those

involving i. The above equation then becomes

cos nd + i sin nQ =
(
cos n 6 - ~~^ cos"~2

(9 sin2 6 +
J

-f z/>* cos"- 1
(9 sin (9

-"~
1
~ 2^

cosn
~3 e sin3 ^ + 'Y

This equation has the form P -f iQ = P x

-f iQ'.

Hence by the corollary in 107 we have

cos nO = cos" -
oy

cos ""~2 ^ sin2 H---- .

sin n0 = n cos"" 1 sin -
~

i\

~
cosn~3 sin3 H

Examples.

sin 40 = 4 cos3 sin 4 cos 6 sin3
0.

cos 50 = cos5 0-10 cos3 sin2 -f 5 cos sin4 0.

EXERCISES 48

Expand in powers of sin and cos 0:

1. sin 30. 3. cos 40. 6. sin 60.

2. cos 30. 4. sin 50. 6. cos 70.
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110. Exponential values of sin x and cos x.

We shall assume the following expansions:

sin x x
o~j

~T~ pH """'">

,
a;
2

,

x4

cosx = l- - + --..-.

These expansions are derived by the methods of Differential

Calculus. The letter e stands for an irrational number, e =

2.7182818 4- ,
which is the base of the natural system of loga-

rithms. The last two series are used for calculating sin x and

cos x, by putting for x its value in radians. Thus, to calculate

sin 10, put x = 10 = 0.17453 radians. (Table V.)

In the first series replace x by ix and define the result to be

e ix
; noting that

7*2 = 1 i3 = i i* = 1i j.,
i, I, i A, ,

we obtain

x2 x3 x4
^r

5

e ix = 1 + ix - - + + i-

\ ./ X3 25

+ T"3I +
5!

Hence

e
ia; = cos a: + i sin x.

Replacing x by -
or;

e-tx _ cog x __ t
'

sjn ^.^

From these equations we find

e ix
_j_ 6-i* ^ e

cos x =--
>'

sm ^ =

These formulas are useful in many applications of the trig-

onometric functions.

EXERCISES

Using the exponential values of sin x and cos x, show that:

1. sin2 x + cos2 x = 1. 3. cos 2x - cos2 x - sin2 x.

2. sin 2x - 2 sin 3 cos z. 4. cos4 x - sin4 x - cos2 x - sin2 x.
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111. The hyperbolic (unctions.

In the expansions for sin x and cos x given at the beginning of

110 replace x by ix and define the results to be sin ix and cos ix

respectively. We obtain

(x
3 x5 \

x +
;rf
+

f
H 1

;

1 , , ,cos ix = 1 -f
2^
+ Tf H

These equations we consider as defining the sine and cosine of

the imaginary quantity ix.

Multiply the first equation by i and subtract the result from

the second. We obtain

cos ix - i sin ix = e
x

.

Change x to -
x; cos ix + i sin ix = c~x .

Note that, from the definitions of cos ix and sin ix,

cos ( ix) = cos ix and sin (- ix) = - sin ix.

Combining the two preceding equations by addition and sub-

traction, we find

ex + erx . . .c
x - e~x

cos ix =
^ ;

sin ix = z ^z Z

We now define

Hyperbolic cosine of x = cosh a: = cos ix;

Then

Hyperbolic sine ofx = sinh # = ~
sin zx.

, eT 4- e~x
cosh x =

J o

These functions are related to the hyperbola somewhat as the

circular functions to the circle.

Their values can be calculated readily from the values of e
x

and e~x given in Table VI.

The remaining hyperbolic functions are defined by the equa-

tions
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, , sinh x , , 1
tanh x =

-, ; coth x = - r ;
cosh x tanh x

sech x =
i ; csch x1 . V^OV^AA */ !

cosh x sinh a;

EXERCISES

Show that:

1. sinh = 0; cosh = 1. 5. cosh (- x) = cosh x.

2. sinh TTI = 0; cosh iri = -1. 6> Cogh2 ^ _ Sinh2
3. = L

. . , TTZ . , tri ^
3. sinh

-g-

= i; cosh y = 0. 7. sech2 x = 1 - tanh2 x.

4. sinh ( x) = sinh x. 8. csch2 x = 1 coth2 x.

Draw the graphs of the equations (see Table VI):

9. y = ex . 11. ?y
= cosh :r.

10. y = e~x . 12. y = sinh x.
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112. Spherical geometry.

We devote this article to a review of some facts concerning

the geometry of the sphere.

(a) A plane section of a sphere is a circle. When the plane

passes through the center of the sphere, the section is a great

circle; otherwise a small circle.

(b) Any two great circles intersect in two diametrically oppo-

site points and bisect each other.

(c) The two points on the sphere each equally distant from all

the points of a circle on the sphere are called the poles of the

circle. A great circle is 90 distant from each of its poles.

(d) A spherical triangle is a figure bounded by three circular

arcs on a sphere. In this chapter we consider only triangles

whose sides are arcs of great circles. Any such triangle may
therefore be considered as cut from the spherical surface by the

faces of a triedral angle whose vertex is at the center. The face

angles of this triedral angle measure the sides of the triangle,

and its diedral angles the angles of the triangle.

The arcs forming the sides of a spherical triangle will be con-

sidered as measured in degrees or in radians. Their lengths in

linear units can be obtained if the radius of the sphere is given.

We shall also assume that each side and each angle is less

than 180, in general.

163
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(e) If a triangle be constructed by striking arcs of great circles

with the vertices of a given triangle as poles, the new triangle is

called the polar triangle of the given one.

This method of construction will, in general, yield eight

triangles whose vertices are the poles of the given triangle. One

of these, and only one, satisfies the following relations.

Let the sides of the given triangle be a, 6, c; its angles a, 0, V;

let the sides of the polar triangle be a', &', c' and its angles a',

0', y'> we assume that vertex A is the pole of side a'; vertex B
of side 6'; and vertex C of side c';

then

a! = 180 -
a;

a' = 180 -
a;

and similarly for the other sides

and angles. That Ls, any part

of the polar triangle is the supple-

ment of the part opposite in the

given triangle.

The adjacent figure shows a

triangle ABC and its polar triangle A'B'C'\ A is the pole of

arc B'C", B of arc A'C', C of arc A'B'.

(f) The sum of the angles of a spherical triangle is greater than

180 and less than 540. The amount by which the angle sum

exceeds 180 is called the spherical excess of the triangle. Two
formulas for calculation of the spherical excess are given in

126.

The area of a spherical triangle is to the area of the sphere as its

spherical excess, in degrees, is to 720. That is, if E be the

spherical excess in degrees and K the area of the triangle, and R
the radius of the sphere, then

K JL.
720'

or K = 4irK2 E_
720'

(g) The sum of the sides of a spherical triangle is less than

360.
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113. The terrestrial sphere.

To illustrate some of the definitions just given we shall relate

them to the surface of the earth considered as a sphere with

radius R = 3960 miles.

The earth's axis of rotation meets the surface at two points,

P and P f

,
the north geographical pole and the south geographical

pole.

A plane through the center of the earth and perpendicular to

axis PP' cuts the surface in a great circle called the equator.

A plane perpendicular to axis

PP' at any point between P
and P' other than the midpoint

cuts the surface in a small circle

called a parallel of latitude. The

tropics (Cancer and Capricorn)

and the two arctic circles are

such parallels.

Any plane which contains the

axis of rotation PP' meets the

surface in a great circle called a

meridian.

Any meridian cuts the equator in two diametrically opposite

points. For the
"
prime meridian "

(meridian of Greenwich,

PGQ) these are the points on the equator of longitude and

180 longitude, Q and Q', respectively.

If A is a station on the earth's surface on meridian PAE,
arc EA = latitude of A and angle QPA = longitude of A.

Latitude is counted positive when point A is north of the

equator and counted negative when point A is south of the

equator.

Arc PA is the north polar distance of A and is counted from
'

to 180. It is the complement of the latitude, and is greater

than 90 when the latitude is negative.

If A' is a second station, E'A' = latitude of A', angle QPA'
= longitude of A', the angle A'PA = the difference of longi-

tude, DLO, of A and A'.
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If a plane be passed through the earth's center and points

A and A', the plane will cut the earth's surface in the great

circle A A'.

Any other plane containing points AA' will cut the earth's

surface in a
"
small

"
circle.

The shortest distance between A and A' is the distance meas-

ured along the great circle joining the points.

The spherical triangle APA', whose vertices are two stations

on the earth's surface and the north pole, is much used in the

applications of spherical trigonometry. If the latitudes and

longitudes of A and A' are given, we know also their polar dis-

tances; that is, the sides AP and A'P of the triangle. The

difference of longitudes is the angle APA' included between

these sides.

The determination of the remaining parts of triangle APA',

when two sides and the included angle are given, constitutes a

basic problem of spherical trigonometry. If an airplane is to

fly from A to A' by the shortest route, it would have to start

from point A at an angle PAA' with the true north.

114. Spherical right triangles.

Let be the center of a sphere and ABC a triangle on its

surface, with the angle at C equal to 90.

It should be noted that a spherical triangle may have two,

or even three, right angles. When there is more than one right

angle the side opposite each right angle is a quadrant.

We shall use small letters a, 6, c to indicate the sides opposite

the vertices A, B, C, respectively.

The angles of the triangle, at vertices A, B, C, we shall in-

dicate by the Greek letters a, 0, 7, respectively. Therefore 7 =

90.

Figure 82 indicates such a triangle, side AC being an arc

of a great circle which we might think of as the equator and

side CB then being an arc of a meridian. The right angle is at

C and AB is the hypotenuse.

Such a triangle is again represented in Fig. 83. In this figure
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pass a plane perpendicular to OA at A' and let this plane meet

OB in B r and OC in C'. The plane angle B'A'C' measures angle

BAG = a of the spherical triangle. 112(d).

B

FIG. 82

The following triangles are plane right triangles:

A OA'B'-, rt. angle at A'\ A 04'C'; rt. angle at A';

A A'C'B'; rt. angle at C"; A OC'B'\ rt. angle at C'.

Then from plane trigonometry,

(a)

(b)

(c)

sin a = sin B'A'C'
C'B f

A'B'

C'B'

OB'
A'B 1

OB'

A'C'

sin a

sin c

cos a = cos B'A'C' = A'C' _ OA' _tanb
4'J8' 4'fl' tan c

tan B'A'C'
B'C'

A'C'

OA'

B'C'

OC' tana
A'C'

~
sin 6'

OC'

Dividing (a) by (b) and comparing with (c) we have

(d) cos c = cos a cos b.

Interchanging a with 6 and a with in (a), (b), (c) gives

three similar formulas, making seven relations.

These may be combined to give three additional formulas, mak-

ing ten in all. They are stated below, in forms cleared of fractions.
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sin b = sin c sin /3,

tan a = tan c cos j3,

tan 6 = sin a tan 0,

cos c = cot a cot j8,

(10) cos = cos 6 sin a.

(1) sin a = sin c sin a, (6)

(2) tan 6 = tan c cos a, (7)

(3) tan a = sin 6 tan a, (8)

(4) cos c = cos a cos 6, (9)

(5) cos a = cos a sin )3,

Here (1), (2), (3), (4) are (a), (b), (c), (d) cleared of fractions;

from (1), (2), (3) we obtain (6), (7), (8) by interchange of letters.

To obtain formula (5) solve (3) for cos a, obtaining

cos a = sin a cot a sin b

= sin a cot a sin c sin from (6)

= sin a cot a sin from (1)

= cos a sin 0.

Formula (10) results from (5) by interchange of letters.

To obtain (9), solve (3) for cos a, solve (8) for cos 6, and sub-

stitute these in (4).

115. Napier's rules of circular parts.

Let co-x denote the complement of any part x of the triangle.

Take the complements of c, a, 0, and arrange the five parts,

a, b, co-a, co-c, co-jS, called circular parts, in the order in which

they occur in the triangle, as in the adjacent figures. Then if

Fia. 84 FIG. 85

any one of the five be taken as the middle part, of the other four

parts two will be adjacent and the other two opposite to this

part. Thus, if co-c be taken as the middle part, co-)3 and co-a

are adjacent, a and b opposite.

If c exceeds 90 co-c will be negative; similarly for a and 0.
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Napier's Rules:

{Product

of tangents of adjacent parts,

or

Product of cosines of opposite parts.

Example.

With co-c as middle part Napier's rules give

sin (co-c) = tan (co<*) tan (co-/3) or cos c = cot a cot 0;

sin (co-c) = cos a cos 6 or cos c = cos a cos 6.

These are formulas (4) and (9).

Exercise. Taking each part in turn as the middle part write out a

complete list of formulas relating to the spherical right triangle.

116. Solution of right spherical triangles.

When two parts of a right triangle are given, in addition to

the right angle, we can always apply Napier's rules to write

down three equations each of which contains the two given

parts and one of the unknown parts. These equations then

determine the three unknown parts.

Ambiguous Case. When an unknown part is determined by
the value of its sine, two supplementary values are obtained,

and there may be two solutions.

This happens when the given parts

are an angle and its opposite side, a.

and a or ft and 6.

In this case the twro triangles deter-

mined by the two solutions together

form a lime, as AA f
in Fig. 86, where

the given parts are assumed to be

angle a with vertex at A and its

opposite side a.

When an unknown part is deter-

mined by its cosine or tangent there is no ambiguity. If the

function is positive, the part lies in the first quadrant; if nega-

tive, in the second quadrant.
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In the ambiguous case care must be taken to select the three

unknown parts properly from the three pairs of answers. As a

guide to this selection the following rules will be useful.

1. The sum of two sides must be greater than the third side.

2. If two sides are unequal, the opposite angles are unequal,

and the greater angle lies opposite the greater side.

3. Half the sum of two sides is in the same quadrant as half

the sum of their opposite angles.

4. Sides a and b are in the same quadrant if side c is in quad-

rant I; they are in different quadrants if side c is in quadrant

II.

5. A side and its opposite angle are in the same quadrant.

Rules 4 and 5 are easily obtained by inspection of the ten

formulas. Rule 4 follows from formulas (2) and (7) and rule

5 from (3) and (8). The first three rules apply also to oblique

spherical triangles.

117. Examples.

We shall consider several examples, of which the second illus-

trates the ambiguous case.

In writing logarithms having characteristic 9-10 the -10 is

omitted to save space.

For a check use Napier's rules to write an equation containing

the three unknown parts.

Example 1.

Given a = 35 42';
= 60 25'. Find 6, c, a.

The diagram of circular parts is shown in the

figure. Taking (1), (2), (3) in turn as middle part

we have

(1) sin 35 42' = tan 29 35' tan 6;

(2) sin 29 35' = tan 35 42' tan (co-c);

(3) sin (co-a) = cos 29 35' cos 35 42'. FIG. 87
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Hence

tan b
sin 35 42'

cot c
sin 29 35'

tan 29 35" tan 35 42"

cos a = cos 29 35' cos 35 42'.

Check. The computed parts must satisfy the relation

sin (co-) = tan 6 tan (co-c), or cos = tan 6 cot c.

Computations.

log loglog

sin 35 42' = 9.7660

tan 29 35' = 9.7541

sin 29 35' = 9.6934

tan 35 42' = 9.8564

cot c = 9.8370

c = 55 30'

cos 29 35' = 9.9394

cos 35 42' = 9.9096

tan 6 = 0.0119

b = 45 17'

Check. log cos = log tan b + log cot c.

9.8490= 0.0119+9.8370.

Example 2.

Given = 48 25', a = 32 13'. Find b, c, ft.

Using (1), (2), (3) in turn as middle part,

Napier's rules give

(1) sin b = tan 41 35' tan 32 13';

(2) sin 41 35' = cos (co-/3) cos 32 13';

(3) sin 32 13' == cos (co-c) cos 41 35'.

Solving for the unknown parts:

sin 6 = tan 41 35' tan 32 13';

sin 41 35'

cos a = 9.8490

a = 45 4'

sm/3

sin c

cos 32 13'

sin 32 13'

cos 41 35'

Check. sin b = cos (co-c) cos (co-0)
= sin c sin ft.

log

sin 41 35' = 9.8220

cos 32 13' = 9.9274

log sin

Computations.

log

tan 41 35' = 9.9481

tan 32 13' = 9.7994

log sin b 9.7475

6 = 33 59'

6' = 146 1'

Check. log sin b

9.7475

9.8946

0= 51 41'

ft'
= 128 19'

log sin c + log sin ft.

9.8529+9.8946.

log

sin 32 13' = 9.7268

cos 41 35' = 9.8739

log sin c = 9.8529

c = 45 27'

c' = 134 33'
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If the logarithm of the sine of one of the unknown parts is 0, that

part is 90, and there is only one solution. If the logarithm is positive

there is no solution.

Example 3.

Given a = 50, c = 120. Find side 6.

Here co-c = 30, a negative angle. To obtain side b Napier's

Rules give, with co-c as middle part,

sin (- 30) = cos b cos 50, or, cos b = sin (- 30) sec 50.

Since sin ( 30) is a negative number cos 6 is negative and 6 is in

quadrant II. We obtain

cos b = - X 1.5557 = - 0.7778. b = 180 - 38 56' = 141 4'.

Example 4.

Solution of an oblique spherical triangle.

In triangle ABC let there be given two sides and their included angle,

namely
b = 63 22', c = 59 17', a - 81 39'.

The unknown parts, side a and angles ft and y are to be calculated.

Divide the oblique triangle into two right triangles by the perpendic-

ular CD drawn from vertex C on side AB, as in Fig. 89a. Let p =

arc CD, m arc AD, c m = arc DB. In right triangle CDA side

b and angle are known so that we can calculate p, m, and angle DCA.
Then in right triangle CDB we know p and c m, and can calculate

side a, angle ft and angle DCB. Finally the sum of angle DCA and angle

DCB equals angle 7.

The student should note the close analogy between the method

used here and that used in the corresponding problem for the

plane oblique triangles. See Example 1 at the end of 43.
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EXERCISE

(a) Show that in A CDA Napier's Rules give,

with co-6 as middle part; cos 6 = cot a cot DCA,
or, cot DCA -= cos 6 tan :

with co-a as middle part; cos a. = cot b tan w,

or, tan m = tan 6 cos a :

with p as middle part; sin p = sin 6 sin a.

(b) Show that in A CDB Napier's Rules give,

with p as middle part; sin p = tan (c
- m) cot DCS, or, cot DC*

cot (c
- m) sin p:

with c - m as middle part; sin (c
- m) = cot tan p, or, cot =

sin (c
- m) cot p:

with co-a as middle part; cos a = cos (c
- m) cos p.

(c) Use the numerical values given above to calculate angle DCA, m
and p by the formulas under (a), then angle DCB, P, and a by the formulas

under (b), arid finally angle 7. Use 4-place tables.

Ans. a = 70 7',
= 70 9', 7 = 64 49'.

118. Quadrantal triangles.

A quadrantal triangle is one having a side equal to a quadrant

or 90. Its polar triangle will be a right triangle, which may be

solved by Napier's Rules. The parts of the given quadrantal

triangle then become known by (e) of 112.

119. EXERCISES 49

Solve the following triangles, 7 being the right angle:

1. a = 137 59', 6. a = 134 30', 9. 6 = 122 38',

b = 58 40'. c = 122 8'. = 134 30'.

2. a = 137 50', 6. c = 137 20', 10. b = 60 11.4',

c = 64 40'. a = 149 40'. c = 83 30.8'.

3. a = 5 47', 7. c = 73 35', 11. c - 129 14.7',
= 85 52'. = 101 13'. a = 43 15.7'.

4. a - 41, 8. a = 74 7', 12. a = 58 3.5',
- 37. a = 75 6'. (3

= 36 35.6'.

Solve the following quadrantal triangles, side c being 90:

13. a = 116 45', 16. 6 - 35 6', 19. = 24 12.6',

6 = 44 26'. - 33 28'. 7 = 152 50.6'.

14. b = 36 10', 17. a = 108 23', 20. a = 58 52.1',

7 - 65 28'. 7 - 88 18'. 7 - 146 59.4'.

16. a = 18 8', 18. a - 80 10', 21. b - 127 24.3',
= 48 52'. a - 68 0'. - 135 56.2'.
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120. Oblique spherical triangles. Two fundamental formulas.

I. Law of sines.

Let triangle ABC be a spherical oblique triangle. To obtain

relations between the parts of such a triangle we draw an arc

through a vertex perpendicular to the opposite side and use the

resulting right triangles.

The foot of the perpendicular from C on AB, point D, may
fall on side c (Fig. 89a) or on side c produced (Fig. 89b).

FIG. 89a

By use of Napier's rules :

A ADC, sin p = sin b sin
;

sin p = sin b sin (IT
- a) ;

A J3DC, sin p = sin a sin 0; sin p = sin a sin 0.

But sin (TT
- a) = sin a. Therefore the equations from Fig.

89b reduce to those for Fig. 89a.

Equating the values of sin p, we have

sin b sin a = sin a sin 0.

This may be written

sin a _ sin b

sin a
~

sin /5

By drawing the perpendicular through vertex B a third ratio

is introduced and we have

,^. sin a sinb sine

sin a. sin siny

These relations are known as the law of sines. In verbal form,

the sines of the sides are proportional to the sines of their opposite

angles.
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II. Law of cosines for sides.

In Fig. 89a or 89b, let AD = m. Then BD = c - m, Fig. 89a,

and BD = c + m, Fig. 89b. We first consider Fig. 89a.

In right A -BDC: cos a cos (c
- m) cos p

= cos c cos m cos p + sin c sin m cos p.

We substitute here the values of cos m cos p and sin m cos p
from A .4 DC.

In A .'IDC: cos b = cos m cos p.

Also, sin m = sin b sin ACD and cos a = cos p sin .4CD.

.*. sin m cos p = sin 6 cos a.

Substituting these in the expression for cos a we have

(2) cos a = cos b cos c + sin b sin c cos a.

In Fig. 89b, BD = c + m. Also angle DAC = IT - a.

In right A #DC: cos a = cos (c -f- ra) cos p

= cos c cos w cos p - sin c sin m cos p.

In right A .IDC: cos m cos p = cos &;

cos (TT ex)
sin m cos p = sin ACD sin & -. TTTTV^

sin ylCD

= sin ACD sin & TTTK
sin ylCD

= sin 6 cos a.

Substituting in the expression for cos a we obtain formula (2)

exactly as before.

By drawing perpendiculars on the other two sides we would

obtain corresponding formulas for those sides. Instead of

writing these formulas out separately we include all three in a

verbal statement of the law of cosines for sides..

The cosine of any side equals the product of the cosines of the

other two sides plus the product of their sines by the cosine of their

included angle.

From the fundamental formulas (1) and (2) we shall derive a

group of other formulas adapted to the solution of spherical

triangles.
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1 21 . Principle of duality.

By means of (e) of 112 any formula relating to the spherical

triangle can be made to yield a second formula. Thus, let

A A'B'C' be polar to A ABC. Then from (1) and (2), applied

to A A'B'C', we have

sin a' sin a . , , ,
. , ,

.
, ,-

77 = -
--,; cos a = cos o cos c 4- sin 6 sin c cos a.

sin 6' sin ft"

But a' = 180 -a, a' = 180 -
a,

6' = 180 -ft ft'
= 180 -

6,

c' = 180 -7, 7' - 180 -c.

Substituting and reducing, we have

sin a _ sin a

sin ft

~
sin &'

(3) cos a = - cos ft cosy + sin ft siny cos a.

The first of these is simply the law of sines; the second is a

new formula. It is called the law of cosines for angles.

1 22. Formulas (or the half-angles.

From the half-angle formulas of group C, 73, we have

i /I"
sin 2a = y

- COS a
sin

'

2

Since \a is less than 90, a being less than 180, we take the -f

sign.

We work out a value for 1 - cos a to substitute under the

radical.

Solving (2) for cos a, we have

cos a - cos b cos c
cos a

1 - cos a = 1 -

sin 6 sin c

cos a cos b cos c

sin 6 sin c

sin b sin c -f cos b cos c - cos a

sin b sin c

cos (b
-

c)
- cos a

sin b sin c

- 2 sin %(b - c 4- a) sin %(b - c - a)

sin b sin c

67

75
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- cos a. _ sin \(a + b - c) sin |(a - b -f c)_
2

~~

sin 6 sin c

(4) Let 25 = a + b + c.

Then i(a + b - c)
= s - c; -|(a

- 6 + c)
= s - 6. 82

Therefore

(5) sin
i ____ /sm (s

-
b) sm (s

-
c). , fsin

nn %a = ^ sin b sin c

Similarly, starting with cos \a.
= V^(l -f cos a), we get

Ism 5 sm (s - a)
cos -

sm b sm c

By dividing,

(7) tan \a = \
n

.

~
)sm(s-c)^

^ sm s sm (s
-

a)

Given the three sides, one of these formulas, preferably the

last, will determine the angles. When all three angles are de-

sired, let

(8) tan r = \ -. -;
If sm s

'

then

/m 4 l *an r

(9) tan | sm (s
-

a)

sm (s
-

b)

tan r

(10) tan J/J
=

(11) tan |7 =
, v-x *

sin (s
-

c)

123. Formulas (or the half sides.

Proceeding as above with (3) of 121, or by applying the

principle of duality to formulas (5) to (11), we have, on putting

(12) 2S = a -f ft -f 7

and

(13) tan R = \
If c

- cos S-
-^ ,

cos (S -
a) cos (S -

/3) cos (S
-

7)

sin Ja(14)
- co5 S cos (S

sm j3 sm 7

cos |a
co*

(15)
co* -

<?) cos (S

sm /3 sin 7
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- cos S cos (S - a)
(16) tan |a - ^~(g _ ^ cos (g y

(17) tan \a = tan R cos (S -
a),

(18) tan \b = ton R cos (S -
0),

(19) tan \c = ton R cos (S
-

7).

124. Napier's analogies.

Dividing tan \a by tan ^0 we obtain

tan \a _ sin (s b)

tan J0
~

sin (s
-

a)

By composition and division, or by following the steps in the

first part of 81, we obtain

/ N tan -la 4- tan |0 _ sin (s
-

V) + sin (s
- a)

tan \a - tan ^0 sin (s
-

fr)
- sin (s a)

To reduce the fraction on the left we write, for convenience,

Then

tan x + tan y __
tan x -f tan y cos x cos y

tan a: - tan y
~

tan a; - tan y cos x cos y

- sm cos y -f cos sin y _ sin (.r -f //)

sin x cos y ~ cos x sin y sin (x
-

y)

tan \a + tan ^0 _ sin %(<* + 0)

tan Ja - tan |0 sin ^(a -
0)

To reduce the fraction on the right side of equation (a) we

write u = s - 6 and v = s a. Then, 67,

sin u -f sin v
__

2 sin \(u + v) cos \(u -
v)

sin u - sin v
~

2 cos %(u -f v) sin %(u -
v)

tan J(w -f f)

tan ^(w -
v)

But

t* e; = s 6 s-|-a = a b.

sin (s
-

6) 4- sin (s a) tan \c_
sin (s

-
6)

- sin (s
-

a)

~
tan |(a -

6)

Then equation (a) reduces to
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sm ?(<* + 0) _ tan \c

sin \(a -
0)

~
tan %(a

-
b)"

Similar formulas may be obtained involving the pairs of

angles a, 7 and 0, 7. All may be expressed by the same verbal

statement.

In applications to the solution of triangles, (20) is written in

the form

Multiplying tan \a by tan \$ and reducing,

tan \OL tan \$ __
sin (s

-
c)

1

~
sin s

By composition and division, and reduction as above,

(21) cos\(a + 0) = tan \c

cos j ( -18) teni(+&)'
or

These formulas determine the other two sides when two angles

and their included side are given.

Proceeding as above with tan ^a and tan -*-&, or by the prin-

ciple of duality applied to formulas (20) and (21), we obtain

or

(230 tan i( + 0) = "";)"* co' 4r-v y 2V K'

cos^(a+b)
2 '

These formulas determine the other two angles when two sides

and their included angle are given.
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125. Delambre's or Gauss's analogies.

These are formulas for the sine and cosine of the half-sum

and the half-difference of two angles.

(24) M( + ffi-*^fc)
co, ir>

(25) Ka-fl-* ^fr;

(26) coS K + =

(27) cosK-/3)=

We shall show how (27) is derived.

cos %(a -
/3)

= cos \a cos |/3 + sin \a sin ^/3.

From the half-angle formulas we obtain

cos \a cos |/3 _ sin_s.
sin \a sin |/3 _ sin (s

-
c)

sin \y sin c' sin ^7 sin c

Adding these we have

cos \(a. $) __
sin s -f sin (s

-
c)

sin \y sin c

_ 2 sin ^(2s -
c) cos |c

2 sin |c cos

sin |(a + 6)

sin \c

Multiplying both sides by sin 7 gives (27).

126. Area of a spherical triangle.

This may be calculated by (/) of (82), namely,

K = E
7(

X 47T.R
2

, or, K = E (radians) x

tan \a tan \l> sin 7

To obtain E, we may first calculate the angles. E may also

be obtained by one of the following formulas which we add

without proofs.

tan \E =
tan \a tan |6 cos 7'

Wt
, lri ,, ^ s a, s 6 .

tan JE? = i/tan = tan
g

tan
2

tan
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127. Solution of spherical oblique triangles.

Six cases arise, according to the nature of the three given

parts.

I. Given two sides and an opposite angle.

Denote the given parts by a, 6, a. Calculate ft by (1), then

7 by (22) or (23), and c by (20) or (21).

Check. sin b : sin c = sin 8 : sin 7,

which involves the computed parts.

Ambiguous Case. Formula (1) will give two (supplementary)

values for ft. Two solutions are obtained when both values of

ft lead to values of 7. Otherwise one or both values of ft must

be rejected.

Rule. Retain values of ft which make a -
ft and a - b of like

sign.

Otherwise (20) and (22) take the impossible form -f =
.

II. Given two angles and an opposite side.

Denote the given parts by a, ft, a. Calculate b by (1), then

proceed as in I.

Ambiguous Case. Formula (1) gives two values of 6. Retain

the value or values which make a ft and a b of like sign.

TIL Given the three sides.

Calculate the angles by (9), (10), (11).

Check, sin a : sin a = sin ft : sin b = sin 7 : sin c.

IV. Given the three angles.

Calculate the sides by (17), (18), (19).

Check. As in III.

V. Given two sides and their included angle.

Denote the given parts by a, 6, 7. Calculate '%(a -f ft) by

(23'), i(
-

0) by (22'); then a and ft by addition and sub-

traction; obtain c in two ways by the law of sines. This fur-

nishes a check; or check by (20) or (21).
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VI. Given two angles and their included side.

Denote the given parts by a, ft c. Calculate %(a + b) from

(21'), |(a - 6) from (20'); hence get a and 6; obtain 7 in two

ways by the law of sines. This gives a check; or check by (22)

or (23).

The quadrant of a side or angle, when in doubt, may often be

decided readily by the use of Rules 1, 2, or 3 of 116. These

three rules apply to oblique triangles as well as to right tri-

angles.

1 28. Alternative method under Case V.

When two sides and their included angle are given, each of

the unknown parts can be calculated independently by compact

formulas well adapted to logarithmic computation. These

formulas will now be derived. Applications will be given in the

next chapter. See also the note in 134.

Case V.

Given 6, c, a. To determine a, /3, 7.

We return to Fig. 89a, which is reproduced here for conven-

ience of reference. The case of Fig. 89b will be discussed later.

Apply Napier's Rules to triangle CDA:

1) cos b = cos m cos p, or cos p = cos 6 sec m.

2) sin m = tan p cot a, or cot p = cot a esc m.

3) cos a = tan m cot fe, or tan m = tan b cos a.

Apply Napier's Rules to triangle CDB:
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4) cos a = cos p cos (c
- m).

5) sin (c
- m) = tan p cot /3, or cot = cot p sin (c

- m).

Substitute cos p and cot p from 1) and 2) in 4) and 5) :

6) cos a = cos b sec m cos (c
- m).

7) cot = cot a esc m sin (c
- m).

Equation 3) gives m, 6) gives a, 7) gives 0.

To obtain 7 = angle BCA, we may suppose a perpendicular

BD' to be drawn from B to side AC, and let AD' = n. Then we

obtain, in place of 3), 6), 7), the following equations:

3') tan n = tan c cos a.

6') cos a = cos c sec n cos (6
-

n).

7') cot 7 = cot a esc n sin (6
-

n).

As to the case of Fig. 89b, if we regard arc m as a positive

length, then arc DB = c + m and this quantity would appear in

c-fm
FIG. 89b

6) and 7). But if we regard m as a signed quantity we see from

3) that m will change sign when angle a becomes obtuse and so

we must write arc DB = c -
ra, not c + m. Hence we obtain the

same formulas from either figure.

For convenience of reference we group the formulas of this

section.

Alternative formulas for Case V. Given &, c, a.

(28) tan m = tan b cos a; tan n ^ tan c cos a.

(29) cos a = cos b sec m cos (c
- m) = cos c sec n cos (b -n).

(30) cof p = cof a esc m sm (c
- m).

(31) cof y = cot a esc n sin (b
-

n).
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129. Haversine Formulas.

The haversine function, defined in 25, may be conveniently

employed when three sides of a triangle are given and only one

of the angles is required, or when two sides and their included

angle are given and the third side is required. Extensive tables

of this function have been calculated. A brief table is included

in Appendix B.

(a) Given the three sides, to find one of the angles.

The square of the half-angle formula (20) gives

sin2 \a = sin (s b) sin (s
-

c)

sin 6 sin c

^ . . t 1 - cos a ,

But sin2
%a =

^
= hav a.

Therefore

sin (s
-

b) sin (s
-

c)
(32) hav a =

sin b sin c

(b) The same problem may be solved by starting with the law

of cosines and introducing the haversine function.

From the law of cosines:

cos a cos b cos c
cos a =

1 cos a = 1 -

sin 6 sin c

cos a - cos b cos c

sin 6 sin c

sin b sin c -f cos 6 cos c cos a

sin 6 sin c

cos (b c) cos a

sin b sin c

But

1 - cos a = 2 hav a;

cos (6
-

c)
= 1 - 2 hav (6

-
c) ;

cos a = 1 2 hav a.

Therefore

hav a - hav (b -
c)

(33) hav a
sin b sin c
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(c) A frequently occurring problem in the applications is the

calculation of the third side of a triangle from two sides and

their included angle. It is the problem involved in finding

the distance between two stations whose latitudes and longi-

tudes are known.

The haversine formula for this problem is obtained directly

from (33) by solving for hav a.

(34) hav a = hav (b
-

c) + sin b sin c hav a.

Examples of the use of these formulas will be found in the

following chapter.

1 30. Suggested forms (or computations.

Case I. Given two sides and an opposite angle.

Example.

Given a = 100 37', 6 = 62 25',
= 120 48'.

sin b .

Formulas. sin = -r sin
,

sin a

. . sin \(a + b) . . * .

sin \(OL
-

Reject the larger value of by the rule in I.

log tan i(
-

0) = 9.8455 log tan J(-&) = 9.5395

log sin J( H- W = 9-9952 log sin J(a + 0) = 9.9989

colog sin }(-&) = 0.4852 colog sin J(
-

0) = 0.2412

log cot I y == 0.3259 log tan tc = 9.7796

^7= 64 43.5' ic = 313'

7 = 129 27' c = 62 6'
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Check, log sin 6 = 9.9476

sin c = 9.9463

log sin ft 9.8891

sin 7 = 9.8877

0.0013 0.0014

NOTE. In the solutions of triangles, a complete form should be prepared in

advance, so that only numerical values need be inserted when the tables are

opened.

Case II. Given a, p, a. Tofindb,c,y.

Formulas.
. , sn ft .

sin o =
.

-- sin a.
sin a

The rest of the calculations are as in Case I.

Case III. Given the three sides.

Example.

Given a = 119 32', b = 44 52', c = 144 50'.

To find a, ft, 7.

Formulas.
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Case IV. Given a, 0, 7. To find a, 6, c.

Method (a). Solve the polar triangle as in Case III.

Method (b). Use formulas (12), (13), (17), (18), (19).

Check as in Case III.

Case V. Given two sides and their included angle.

Example,

Given a = 103 7.0', b = 70 40.0', 7 = 127 39.4'.

To find a, 0, c.

Formulas.

(22') tan K-p)-*n
*i

fl ~
Scoti?;smJ(a + &) Check. (20)

/1X . sin 7 . sin K + 0) tan
(1) smc = -- sma. -

sin a
k '

sin J(
-

0) tan i( b)

a = 103 7.0' i(a 4- &) = 86 53.5' J( + /3)
= 83 26.7'

6 - 70 40.0'

a+b= 173 47.0' J(
-

6) = 16 13.5' K -
0) = 7 49.8'

a - b =-- 32 27.0' a = 91 16.5'

\y = 63 49.7' = 75 36.9'.

log cos J (a
-

b) = 9.98235 log sin 7 = 9.89855

colog cos \(a + 6)
= 1.26581 log sin a = 9.98852

log tan \y = 9.69148 colog sin = 0.00011

log tan !( + 0) = 0.93964 log sin c = 9.88718

log sin }(o
-

b) = 9.446S4 c == 180 - ,50 27.8' 129 32.2'.

colog sin J(o+ 6) = 0.00064

log cot IT = 9.69148
jc = 64 46.1'.

log tan 1(
-

/3)
= 9.13836

C/tecA;. log sin J(+ 0) = 9.99715 log tan Jc = 0.32676

log sin }(
~

0) = 9.13429 log tan i(
-

6)
= 9.46390

difference: 0.86286 0.86286

Note that the quadrant of side c is determined by the fact that side c

must be the longest side of the triangle.

Case VI. Given a, 0, c.

Method (a). Solve the polar triangle by the method of Case V.

Method (b). Use (20
;

), (21'), (1); check by (22).
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131. EXERCISES 50

Use 5-place tables where angles are given to fractions of minutes or to

seconds. Reduce seconds to tenths of minutes.

1. 11. 21. 31.

a - 70 5', a = 123 43.8', a = 137 30', c - 120 18' 33 ";

b = 63 22', ft
= 127 41.8', a = 125 0', ct - 27 22' 34 ";

c - 59 11'. y = 83 39.3'. 7= 41 50'. 0= 91 20' 44".



CHAPTER

XII APPLICATIONS

132. Terrestrial triangles.

We shall consider the earth as a sphere with a radius of 3960

statute miles, or land miles. Longitudes are to be reckoned

from Greenwich as prime meridian, 180 or 12 hours to the west

or east. The direction will be indicated by a letter, W or E;

when signs are used, + means west longitude.

We shall denote longitude by lambda, X. Then the longitude

of a given place Ls measured by the arc of the equator contained

between the meridian of Greenwich and the meridian of the

place, and it is also measured by the angle at the pole between

those two meridians.

We shall denote latitude by the letter phi, <p or by L. Lati-

tude is counted positive to the north, and negative to the

south, of the equator.

We shall denote distance from the north pole by p. This

polar distance will be the complement of the latitude,

p = 90 - p = 90 - L.

A triangle whose vertices are the north pole (or the south

pole) and two points on the earth's surface will be called a

terrestrial triangle.

189
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In Fig. 81, let P be the earth's north pole, G Greenwich, A
and A' two stations, station A' lying to the west of station A.

Then triangle APA' is a terrestrial triangle. Two sides of this

triangle are the polar distances of the two stations, or the com-

plements of their latitudes, and the third side is the great circle

arc between the two stations. The angle at the pole is the

difference of longitude of the two stations. The other two angles

are the angles which the great circle arc AA' makes with the

meridian at the respective stations.

To sail a ship, or fly an airplane, from A to A' the navigator

would wish to know the length of the journey if the great circle

arc AA' were followed, and the angles PAA f

and PA'A, which

would be the courses of departure from A and of arrival at A'.

The problem comes under Case V of 127, or the alternative

method of 128, or the haversine method of 129.

The nautical mile is defined as the length of an arc of 1' of a

great circle on the earth's surface. Accordingly, the circum-

ference of the earth would be 360 X 60 = 21600 nautical miles.

The circumference in statute or geographic miles is 24890

miles. Roughly speaking, the measure of a distance in geo-

graphic miles is about one-seventh greater than the measure of

the same distance in nautical miles.

From the definition of the nautical mile, it follows that the

number of minutes in an arc of a great circle is also the number

of nautical miles in that arc.
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1 33. Problems involving the terrestrial triangle. Great circle sailing.

Problem 1.

What is the great circle distance from Seattle, (47 40' N, 122 20' W)
to Honolulu, (21 20' N, 157 50' W)?

We shall use the method of 128 with A as the north pole, B
as the point in Seattle whose latitude and longitude are as given

above, C the corresponding point in Honolulu
;
we shall have

c = AB = 90 - 47 40' = 42 20';

6 - AC = 90 - 21 20' = 68 40';

a = angle BAG = diflf. of long. = 157 50' - 122 20' = 35 30'.

With these values we calculate m from (28) and then a from (29)

of 128.

Computations.

tan m = tan b cos
;

cos a = cos b sec m cos (c
- m)

log tan b = 0.4083 log cos b = 9.5609

log cos a = 9.9107 colog cos m = 0.3639

log tan m = 0.3190 log cos (c
- m) = 9.9671

log cos a = 9.8919

m = 64 22'

c - m = 22 2' a = 38 46'.

a = 38 x 60 + 46 - 2326 nautical miles.

Check. Use the half-angle formula, squared,

.

2
a sin (s 6) sin (s

-
c)

sin ~^
2 sin b sin c

o /

a = 38 46 log sin (s-6)= 9.0345 \a = 17 45'

6 = 68 40 logsin(s-c)= 9.7308

c = 42 20 colog sin b = 0.0308 log sin |a = 9.4841

2s = 148 106 colog sin c = 0.1717 _2

sum 18.9680 18.9682
s = 74 Oo

s - b = 6 13

s - c == 32 33

A check could also be made by calculating both m and n and

then using both forms of (29), 128.
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Haversine solution. From (34) of 129, we have

hav a = hav (b c) -f sin 6 sin c hav (= hav (6
-

c) + Z).

a = 35 30' log sin b = 9.9692 hav (b
-

c)
= 0.0519

6 = 68 40' log sin c = 9.8283 Z = 0.0583

c = 42 20' log hav a = 8.9682 hav a = 0. 1102

6-c=2620' log Z = 8. 7657 a = 38 47'

Problem 2.

With the data of Problem 1, calculate the course of the ship on leav-

ing Seattle and on arriving at Honolulu.

NOTE. Here the term "course" means the angle between the direction

in which the ship is headed and the meridian. The angle is measured from
the northern or southern part of the meridian to make the course an acute

angle. It corresponds to the surveyor's use of the term "
bearing

"
(56).

The navigator uses the term bearing as an angle measured from the direction

of the keel of his ship.

We have to calculate angles and 7. We use (28), (30), (31)

of 128.

tan m = tan b cos a; cot = cot a. esc m sin (c
- m).

tan n = tan c cos
;

cot 7 = cot a esc n sin (b n).

o /

a = 35 30 log tan b = 0.4083 log cot a = 0. 1467

6 = 68 40 log cos a = 9.9107 colog sin m = 0.0450

c = 42 20 log tan m = 0.3190 log sin (c
- m) = 9.5742/1

6 - c = 26 20 m = 64 22' log cot = 9. 7659/1

c - m = - 22 2' = 180 - 59 45' - 120 15'.

Course: S 59 45' W
log tan c = 9 . 9595 log cot a -

. 1467

log cos a = 9.9107 colog sin n = 0.2253

log tan n = 9.8702 log sin (b
-

n) = 9.7258

n = 36 32' log cot 7 = 0.0978

b - n = 32 8' 7 = 38 38'

Course: S 38 38' W.

Checkt 5^J? = 5J?. log sin b = 9 . 9692 log sin = 9 . 9364
sine sin 7 sine =9.8283 an 7 =9.7954

diff. 0.1409 0.1410
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Problem 3.

If the ship in Problem 1 follows the great circle track Seattle-

Honolulu, what should be her course when 1000 nautical miles out of

Seattle? What will be her latitude and longitude p

at that point? b y

Known values are:

c = 42 20',

a = 1000' = 16 40',

ft
= 120 15'. (Prob. 2.)

FIQ. 90

We calculate 6, a, 7, from which the required quantities can be

obtained.

To obtain b we use (34) of 129 with proper change of letters.

Then a and 7 are obtained by the law of sines.

hav 6 = hav (c
-

a) -f- sin a sin c hav (
= hav (c

-
a) 4- Z) ;

sin a . . sin c .

sin a = -
r sm 8; sin 7 = - r sin 8.

sin b
^

sin 6

Check. Use (20') of 124, with change of letters and cleared of

fractions, tan -|(c
-

a) sin (7 + a) = sin (7
-

a) tan %b.

o / log

ft
= 120 15 sin a = 9.4576 hav (c

-
a) = 0.0493

c = 42 20 sin c =9.8283 Z= 0.1452

a = 16 40 hav |3
= 9.8761 hav b = 0.1945

c - a - 25 40 log Z = 9. 1620 b - 52 20'

KC -
a) = 12 50 | = 26 10'

log sin a = 9.4576 log sin c = 9.8283 log Check.

log sin j8
= 9.9365 log sin ft

= 9.9365 tan |(c
-

a) = 9.3576

cl sin 6 = 0.1015 cl sin b = 0.1015 sin |(T + a) = 9.7334

log sin a = 9.4956 log sin 7 = 9.8663 sum 9.0910

7 = 47 18'

a = 18 14' sin (7
-

a) = 9.3996

tan *& = 9.6914

7 -fa = 65 32' ^(7 + a) = 32 46' sum 9.0910

7 - a = 29 4' i(7 -
a) = 14 32'
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Ans. At X, 1000 miles from Seattle on g.c. SH,
latitude = 90 - 6 = 37 40',

longitude = a + long, of S = 18 14' + 122 20' = 140 34',

course = S 47 18' W.

EXERCISES 51

1. Calculate the latitude, longitude and course on g.c. Seattle-Honolulu

when the distance from Seattle is :

(a) 500 miles; (b) 1500 miles; (c) 2000 miles.

2. Calculate the latitude and course on g.c. Seattle-Honolulu, and the

distance out from Seattle at intervals of 10 in longitude from Seattle.

Suggestion. In triangle SPX, Fig. 90, we now have side HP, angle
as found in Problem 2, and angle SPX = 10 for the first interval. The
solution comes under Case VI of 127.

3. In what longitude does the great circle from Seattle to Honolulu cross

the 40th parallel of latitude? What is the great circle distance from

Seattle at this point?

4. An airplane pilot, flying from Seattle to Honolulu, finds that his posi-

tion is 30 N, 150 W. How far should he now fly, directly north or south,
to get on the great circle?

6. Use the methods of 127, 128, and 129, to calculate the great circle

distance between San Francisco (37 47' N, 122 26' W) and Melbourne

(37 50' S, 145 0' E).

6. Determine the positions of the "vertices" of the great circle

through San Francisco and Melbourne. Which one would be used in the

vertex method of determining positions on the great circle?

7. Determine the longitude of the point at which the great circle from
San Francisco to Melbourne crosses the equator. What is the great circle

course at that point? What is the distance from San Francisco?

1 34. Great circle positions and courses. Vertex method.

In deriving the fundamental formulas relating to the spherical

oblique triangle (120 and 128) we used as a basis for the

proofs the right triangles formed by drawing an arc through

one of the vertices and perpendicular to the opposite side. We
follow this plan now. As before, two cases will arise according

as the perpendicular falls within the base or on the base pro-

duced.

NOTE. In 128 the unknown parts of the triangle were expressed in

terms of the given parts and an auxiliary arc ra. In the present section

both m and p (or their equivalents e and p) are used to determine the

unknown parts. Here e is taken as positive.
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In Fig. 91 we have a g.c. CBW part of which, namely arc

BC, is assumed to be the track of a ship sailing from B to C.

In 133 we calculated the distance BC and the courses at B
and C. We also calculated the position (latitude and longitude)

of a point X, lying on BC at a given distance from B, and the

course at X.

When several points like X are chosen to break a long arc

into smaller segments, a convenient method for calculating the

positions and courses at these points wr
ill now be explained.

We call it the
" Vertex Method."

FIG. 91

Follow around on the great circle to the point where it is

farthest from the equator. Call this point V, the
"
vertex

"
of

g.c. BC. There is of course the opposite point V where the g.c.

is again farthest from the equator. In a given case there will

be no question about which one to use.

At V the g.c. BC cuts the meridian EP at right angles. So

arc PV is the perpendicular drawn from P on BC produced.

To find the position and course at X we use right triangle PVX.
If point B were taken to lie beyond vertex V, the foot of the

perpendicular, or point V, would fall between B and C.

We represent the two cases in the figures which follow. Angle

is acute in the first figure, obtuse in the second.

In either figure, P is the north pole, B and C are two points

of known latitude and longitude, V is the northern vertex of
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g.c. BC (that is, the foot of the meridian arc PV drawn perpen-

dicular to BC), X is a point on the g.c. track at a given distance

from B.

To determine the latitude, longitude, and course at X we

first solve right triangle PVB, then right triangle PVX.

FIG. 92b

We first calculate angle 0, from the known positions of B and

C.

Then, in right triangle PVB we have the angle at B and the

hypotenuse c.

Napier's rules give the formulas for p, e, E:

1) sin p = sin c sin |3,
Check.

2) tan e = tan c cos /3, sin p = tan e cot E.

3) cot E = cos c tan 0.

Use the -f sign if ft < 90, the -
sign if ft > 90.

In right triangle PVX we now have p, the polar distance of

V, and arc VX = x = SX + e, + according as ^ 90.

Napier's rules give the formulas for g, Z, u:

4) cos # = cos p cos #,

5) cot I = sin p cot x,

6) cot u = cot p sin x.

The coordinates of V are:

The coordinates of X arc :

cos

vv = 90 -
p;

W = 90 -9;

Check.

= cot Z cot

\n E.

Course at X = u.

It may be noted that we might consider the values of e and E
as signed numbers and drop the ambiguous sign in formulas

2) and 3) and in following equations.
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Example.

We use S and H of Problem 1, 133, as B and C respectively. Also

we take point X so that BX = 1000 miles - 1000' = 16 40'. We keep
the letters used in equations 1) to 6).

From given data Computed

In PSH: 6=
fc
6840 / a= 38 46' (Prob. 1)

c = 42 20' /3
= 120 15' (Prob. 2)

a = 35 30' 7= 38 38' (Prob. 2)

Since (3 > 90 we use the lower signs.

Calculation of p, e, E, with c = 42 20' and = 120 15'.

log log log

sin c = 9.8283 tan c = 9.9595 cos c = 9.8688

sin = 9.9365 cos = 9.7022n tan (3
= 0.2341

sin p = 9.7648 tan e = 9.6617 cot E = 6.1029

p = 35 35' e = 24 39' # = 38 16'

x = BX + e = 16 40' + 24 39' = 41 19'.

Calculation of q, I, u\ with p = 35 35' and x = 41 19'.

The student is advised to solve this example independently,

without using the special notation of formulas 1) ... 6). Na-

pier's Rules are sufficient. Two steps are involved :

(a) solve right triangle PSV, given side PS and angle PSF;

(b) solve right triangle PXV, given side PV and angle SPY.

EXERCISES

1. Solve Exercise 1 of 133 by the vertex method.
2. Solve Exercise 2 of 133 by the vertex method.

3. If the signs in formula 2) are dropped, and the equation is written

tan e tan c cos p, examine the signs of side e according to the quadrants
of side c and angle /?. Similarly for angle E in formula 3).
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1 35. Terrestrial coordinates of selected stations.

This list is placed here to afford material for drill exercises.

Place Lat. Long. Place Lat. Long.

136. EXERCISES 52
*

1. Calculate the sides (in statute miles), the angles, and the area (in

square miles) of the triangle whose vertices are:

New York San Francisco Mexico City.

2. Calculate the sides (in nautical miles), the angles, and the area (in

square miles) of the triangle whose vertices are:

New York Rio de Janeiro Liverpool.

3. Find the distance along the great circle from Boston to Wellington
in New Zealand.

4. A vessel sails on a great circle from San Francisco to Sydney.
Find the courses of departure and arrival and the distance sailed.

6. If the vessel in Kxercise 4 is on the great circle 1440 nautical miles

out from San Francisco, what is her position (<f> and X) and on what course

is she sailing?

6. An airplane is to fly from Dutch Harbor to Tokyo. Calculate the

great circle distance and courses of departure and arrival.

7. As in Exercise 6, for a flight from Manila to Tokyo.

8. (a) Calculate the great circle distance, Sydney-Valparaiso, (b) Cal-

culate <p and X for points on this great circle at intervals of 10 from Sydney.

9. Find the shortest distance between two points on the Arctic circle

which differ by four hours in longitude. How far is it between these points
on the Arctic circle?

10. If a person were to start from a point in 80 north latitude and go al-

ways directly east for a distance of 2000 miles, how much shorter would the

great circle distance be?
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137. Rhumb line. Mercator chart.

Rhumb line.

Any great circle track, except the equator or the meridians,

will cut successive meridians at a constantly changing angle.

In the problems of 133 we saw that the great circle Seattle-

Honolulu cuts the meridian through Seattle at an angle 59 45';

1000 miles from Seattle on the great circle the angle is 47 18';

at Honolulu the angle is 38 38'. Therefore, to follow the g.c.

track, the navigator would have to change continually the

course of his ship.

To avoid this impossible performance, the latitudes and lon-

gitudes of a number of points on the great circle are calculated,

and the ship proceeds from one point to the next by following a

track which is not a great circle but which cuts all meridians at

the same angle and is called a rhumb line. This line is longer

than the g.c. track. But for moderate distances the difference

of length is small, and is more than offset by the convenience of

steering a fixed course.

The problem arises: What course must be set to go from a

given point A to a second given point B, without changing the

course? This problem is solved by use of the Mercator chart.

On such a chart the track of a ship or airplane which travels

on a fixed course appears as a straight line, the rhumb line.

Meridians appear on the chart as parallel straight lines, all of

which are cut at the same angle by the rhumb line. A graphic

solution of the problem is, therefore, obtained by marking the

positions of the two joints A and B on a Mercator Chart, joining

them by a straight line, and measuring the angle at which this

line cuts any meridian.

The Mercator chart.

The theory of this chart can not be discussed here. We shall

only indicate the plan of its construction and how it is used.

Imagine a cylinder to be wrapped around the earth touching

the earth's surface along the equator, the axis of the cylinder

coinciding with the earth's polar axis extended in both directions.
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To make a map of the earth's surface on this cylindrical sheet,

we obtain the point >S on the cylinder which corresponds to a

point R on the earth's surface by constructing the broken line

ORS as shown in Fig. 93. If the radius were continued directly

on it would meet the cylinder in a point higher up, and a small

increase in the latitude of the point R on the surface of the earth

would lead to a great increase in the height of the corresponding

point on the cylinder. To moderate somewhat this rapid in-

FIG. 93

crease in height of the point AS' as the point R moves toward the

pole, line RS is drawn at an angle to OR which is determined by
the theory of the map.

By this construction every point R on the surface of the earth

will lead to a point'S on the cylinder.

If the point R follows a meridian as ERP, the point S will

move up on the cylinder following a straight line which is an

element of the cylinder. If we draw meridians on the earth's

surface, say at intervals of 15 of longitude, we can imagine the

corresponding straight lines drawn on the cylinder. These will

be elements of the cylinder spaced equally around the cylinder.
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If the point R describes a parallel of latitude, the point $
will move around the cylinder in a circle parallel to the equator

and at a distance ES above the equator. If we draw several

parallels of latitude, say 15 apart, they will lead to circles on

the cylinder with unequal spacing, the spaces becoming wider

as we go north.

If we now cut the cylinder open along one of its elements and

roll it out flat, we will have a plane map on which the meridians

of the earth's surface are represented by parallel straight lines

which are elements of the original cylinder. Equally spaced

meridians will correspond to equally spaced parallel lines. Each

parallel of latitude will be represented on the plane map by a

straight line parallel to the line which represents the equator.

As the latitude parallels are taken farther north the spacing

between the corresponding lines on the map will increase rap-

idly as we approach the pole. (Fig. 94.)

If two points, A and R, are selected on the surface of the

earth, and if they are
"
projected

" on the surface of the cyl-

inder to yield the points A' and B'
',
these points will then appear

on our plane map. The great circle track AB could be repre-

sented point by point and would yield a curve on the map.

The plane map which we obtain in this manner is called a

Mcreator chart. On this chart a great circle arc AB will appear

as a curve joining the corresponding points A' and B''. The

straight line on the map joining points A' and B' is the rhumb

line. The angle which this line makes with the meridians will

show the navigator the fixed course to sail from A to B on the

earth's surface.

The rapid increase of distance between the parallels' of lati-

tude on the map which correspond to equally spaced parallels

of latitude on the earth's surface causes distortion. As is seen

by inspection, a 15 change of latitude on the earth requires a

wider spacing of the parallels on the map as we move north.

There is also distortion due to the fact that on the earth's

surface two meridians converge as we approach the pole,

but on the map the lines representing these meridians are par-
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allel. Because of this distortion or stretching lines on the map
must be reduced to obtain their equivalent length on the earth's

surface. The theory of the map tells us that a short line seg-

ment on the map must be multiplied by the cosine of the latitude

to obtain the corresponding length on the earth's surface. If

the two ends of the line segment lie in different latitudes, we

multiply by the cosine of the middle latitude as a close approxima-

tion.

1 38. Construction of a Mercator chart.

Let point A be situated on the earth's surface in latitude <p

and longitude X. Let point A'
,
which represents A on the map,

be placed at a distance x from the meridian of Greenwich and

at a distance y from the equator. We shall call x and y the

Mercator coordinates of point A'. They are calculated by the

following formulas, as multiples of the unit which is used to

represent 1' of longitude on the equator.

(1) x = X (in minutes); y = 7915.71 log cot \p.

Here p is the polar distance of point A. The numerical factor

in the value of y is given more accurately than is needed for our

calculations; its logarithm to seven places is 3.8984896.

Fig. 95 represents a Mercator projection of a portion of the

earth's surface, including the arc from Seattle to Honolulu.

Example.

Longitude Latitude x y

S = Seattle 122 20' = 7340' 47 40' 7340 3261.8

H = Honolulu 157 50' - 9470' 21 20' 9470 1310.7

To make a chart showing the points (x, y) which represent S
and // respectively we choose a suitable scale along the equator,

say 1 inch = 7.5 = 450' of longitude. The points S' and H'

are the opposite corners of a rectangle whose width is the dif-

ference of the two values of x, 9470 - 7340 = 2130; its height

is the difference of the two values of y, 3261.8 1310.7 =

1951.1. On the indicated scale the rectangle would be about

4| inches wide and 4| inches high.
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For any two stations A and B of given latitudes and longi-

tudes we can calculate the coordinate (x, y) and construct a

rectangle with A and B at opposite corners.

150 165 180 165 150 135 120

15

30

45

150 165 180 165 150 135 120

FIG. 95

In calculations involving latitude the middle latitude of the

rectangle is used, as stated at the end of 137.
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Notation. Let

D = the length of the diagonal of the rectangle;

A x = the difference of the z-values or width of rectangle;

A y = the difference of the ^/-values or height of rectangle;

C = the acute angle between the diagonal and a meridian.

Problem 1.

To find the rhumb line course (r.l.C) and the rhumb line distance

(r.l.d) between two points of given latitudes and longitudes.

Angle C above defined is the rhumb line course. Therefore

Ax
(2) tan r.l.C = ^
The r.l. distance can be calculated, though only approxi-

mately, by multiplying D by the cosine of the middle latitude,

cos pm, to get the corresponding length on the earth's surface, as

stated at the end of 137. But D = A y sec C and therefore

r.l.d = A y sec C cos <pm , approximately.

Now by reducing A y by the factor cos ym it becomes A <, the

difference of latitude in minutes: A y cos (pm = A v, approxi-

mately. Substituting this in the preceding equation we have

(3) r.l.d = A 9 sec (r.l.C).

Example.

Determine the r.l. course and the r.l. distance between A(40
J

N,

40 W) and 5(43 N, 43 W).

From (1), for A, x = 2400, y = 2624;

for B, x = 2580, y = 2863.

A x = 180, A y = 239, tan (r.l.C)
== Jf J, r.l.C = N 36 59' W.

r.l.d = A <f> sec (r.l.C)
= 180 sec 36 59' = 225.3'.

Problem 2.

A ship starts from point A of given latitude and longitude and

steams a distance d at a fixed course angle C; to determine the

change in latitude and in longitude.

For the change in latitude equation (3) gives

(4) A 9 = r.l.d cos (r.l.C).
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For the change in longitude, A X, we have

(5) A X = A x sec <pm = d sin C sec <^m , approximately.

We may note here that A x is the same as
"
departure" in

plane surveying or plane sailing and lies along a parallel of

latitude. The length of the corresponding segment of the

equator, or the difference of longitude, is A x sec <^m .

* Example.

A ship starts from (40 N, 40 W) and steams 225 miles on course

N 37 W. Determine the latitude and longitude arrived at.

A ^ = 225 cos 37 = 179.7' = 2 59.7',

V = 40 -h 2 59.7' = 42 59.7'.

A X = 225 sin 37 sec 41 30' = 180.8' - 3 0.8'

X = 40 +3 0.8' = 43 0.8'.

Note that the values of d and C here given are practically the values

calculated in the preceding example.

EXERCISES 53

1. Calculate the values of r.l.C and of r.l.d for the rhumb line track

A(4(r N, 43 W) to (43 N, 40 W).

2. (a) Construct the framework (grid) of a Mercator chart for <p
= 15,

30, 45, oO and X = 120, 135, 150, 165. (b) Calculate the Mercator
coordinates of Seattle and Honolulu and mark them on the chart.

3. (a) Construct a Mercator grid for the region X = 165 K eastward
to X - 7.") W, and <<>

- 30 S to (>l) S. (b) Calculate the Mercator coor-

dinates of Sydney and Valparaiso and mark them on the map. (c) Plot

on this chart the positions of the great circle points calculated in Exercise

8(b) of 136.

4. Del ermine the g.c. distance and the rhumb line distance from New
York to Boston.

6. Determine the latitude in which the rhumb line Seattle-Honolulu

cuts the 135th meridian.

6. Compare the rhumb line distance between two points on the arctic

circle which are separated by 180 longitude with the great circle distance

between these points.

7. Two stations both in the northern hemisphere are separated by 5

in latitude and 30 in longitude. What can you say about the posftion of

the great circle between these stations, whether it is north or south of the

rhumb line?

8. An airplane is flying on the great circle track from Seattle to Honolulu
at 200 knots per hour. What are the coordinates of the position reached
when four hours out of Seattle?
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139. Summary of methods used in navigation.

We first note that there are three ways of reckoning the course

angle C.

1) The acute angle between heading of ship and the merid-

ian; call this Ci.

2) The angle between heading of ship and meridian counted

from the north (or south in the southern hemisphere) through

the east or west from to 180. Call this C2 .

3) The angle between the heading of ship and the north (or

south in the southern hemisphere) through the east, from to

360. Call this C3 .

Plane Sailing. 56.

diff. lat. = d cos C; departure = d sin C.

Here C is C\ or C2 ; if 2, diff. lat. is a signed number.

Traverse Sailing.

Plane sailing when the track consists of several legs, as in

Exercise 1 of 56.

Parallel Sailing.

The course is due east or west, along a parallel of latitude.

diff. lat. =
0, departure =

d, the distance run.

diff. long. = departure times sec <>.

Middle Latitude Sailing.

diff. lat. = d cos C; departure = d sin C.

diff. long. = departure times sec <pm , approximately.

Here the use of the middle latitude <pm takes account, at least

approximately, of the convergence of the meridians. The two

stations must lie on the same side of the equator.

Great Circle Sailing. 133, 134.

I. To find the g.c. distance and the initial g.c. course for the

g.c. track from A to B.
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(a) Solve triangle PAB as under Case V of 127; or

(b) use the haversine formulas:

hav d = hav
|
A<>

|
-f cos vn cos <PA hav

|
"AX |. 129, (34).

sin C = cos <PB sin AX esc d. (Law of sines.)

When the quadrant of C is not known in advance, calculate C
from

hav C = B -hav |d -co,4
129> (33) .

sm d sin co <pA

II. Coordinates of vertex of g.c. track.

cos *py
= cos (PA sin C; tan (\v - \A) = esc <PA cot C.

III. Latitude of point X on g.c. track AB when the longitude

of X is given.

cot <PX = cot w sec
|
\x X r |.

Composite Sailing.

A combination of g.c. sailing and parallel sailing when the g.c.

track reaches too high altitudes. A selected part of the
"
top

"

of the g.c. is cut off by a parallel of latitude.

Mcreator Sailing. 138.

I. To determine the rhumb line course and the rhumb line

distance between two given points:

tan r.l.C = p r.l.d = A<? sec (r.l.C).

x = X (in minutes); y = 7915.71 log cot |p.

II. To determine the change in latitude and longitude due

to sailing a given r.l. course and distance:

r.l.d cos (r.l.C) ; AX = d sin c sec <f>m , approximately.

140. Applications to the celestial sphere.

For the purpose of this article we assume the celestial sphere

to be an indefinitely large sphere concentric with that of the

earth. On it as a background we see all celestial objects.

The projections on the celestial sphere of the earth's poles,

equator, meridians and parallels of latitude are named respec-



208 APPLICATIONS

Q'

FIG. 96

lively the celestial poles (P, P
f

in the figure), the celestial equator

or simply equator (QwQ'e), hour circles (as PSE), and parallels

of declination (as MSM') .

An observer at on the earth's surface will have his zenith

at Z, where the plumb line at O,

if produced, would meet the celes-

tial sphere; his horizon is the great

circle swne, whose pole is Z; his

meridian is the great circle nPZQs,

meeting the horizon in the north

and south points.

Let S be a point on the celestial

sphere, as the sun's center, or a

star. Because of the rotation of

the earth, S will appear to de-

scribe the parallel e'MSw'M'e', rising at e
f and setting at w'.

When S has the position shown in the figure, US is its altitude,

denoted by h (height above horizon); Z sZH (measured by
arc sH) is its azimuth, denoted by A', ZS, or 90 /?, is the

zenith distance of S and denoted by z. Thus h and A
,
or z and A

,

completely define the position of S with reference to horizon

and zenith.

With reference to the equator and pole, ES is called the

declination of S, denoted by 5, and Z QPE (angle which

hour circle PS of S makes with meridian PQ) is called its hour

angle, denoted by t] PS or 90 - 6 Is the polar distance of

S, and denoted by p. Thus the position of S is defined by
5 and t, or by p and t.

A PZS is called the astronomical triangle; its parts, except the

angle at S which we shall not need, are:

PZ = 90 - nP = 90 -
v;

(<p
= latitude of 0.)

PS = p = 90 -
6;

ZS - z - 90 -
fc;

Z ZPS -
t]

Z PZS = 180 - A. FIG. 97

co-h
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141. Problems involving the astronomical triangle.

Problem 1.

To find the local mean time from an observed altitude of the sun;

the latitude of the observer and the declination of the sun are assumed

to be known.

To determine his local time the navigator takes a time sight. That is,

he measures with his sextant the altitude of the sun above the horizon.

This gives him side ZS in triangle PZS.
In the Nautical Almanac he can look up the declination of the sun,

which gives him side PS. His known latitude gives him side PZ.

He then has three sides of the triangle from which to calculate angle

ZPS, or /, the sun's hour angle. This gives him the local time.

From the local time, and the Greenwich time as shown by his chro-

nometer at the moment when he observed the sun's altitude, he can

determine his longitude.

Problem 2.

To determine the latitude by observing the altitude of the sun (or

a star) when it crosses his meridian.

He starts measuring the altitude of the sun a little before local noon

and continues measurements until the altitude begins to fall off. The

greatest observed value is the meridian altitude.

This gives him arc sM in Fig. 96. Subtracting the sun's declination,

arc QM, (or adding it if the sun is south of the equator) gives arc sQ.

The complement of arc sQ is his latitude.

Problem 3.

To find the latitude by noting the time when the sun (or a star)

bears due west, or due east.

This is for observation on land where the observer can point his

transit due west or east and wait for the sun or star to cross the field

of view.

In this case angle PZS is 90. The time of the observation gives

angle t, and the sun's declination gives side PS. Solving for side PZ
gives the co-latitude.

Problem 4.

Find the hour angle and azimuth of Polaris when at greatest elon-

gation, given the declination of the star and the latitude of the station

of observation.

Consider the star's diurnal path about the pole. When the star

is at greatest elongation, the great circle ZS (Fig. 97) is tangent to the

diurnal circle, of which PS is a radius. Hence triangle PZS is right-
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angled at S; PZ and PS are known, and the angles at P and Z may
be found by aid of Napier's Rules.

Problem 5.

In a given latitude, and for a given declination of the sun, find

the sun's hour angle at sunset and the length of day (sunrise to sunset).

Here S is on the horizon (at w' or at e') and PZS a quadrantal tri-

angle. We obtain t by solving the polar right triangle for 180 -
t.

The length of day will be 2t.

142. EXERCISES 54

1. The meridian altitude of the sun was observed to be 61 27'; the

sun's declination was 12 15'. Find the latitude.

2. The meridian altitude of Rigel was 74 32'; the star's declination

was - 8 16'. Find the latitude.

3. Find the length of the longest day in latitude 60. The sun's

declination on that day is 23 27'. Find the length of the shortest day in

latitude 60. Declination is - 23 27'.

4. In latitude 40 49' the sun's altitude is observed to be 20 20'; its

declination is 15 12'; find its azimuth and hour angle.

6. With latitude and declination as in Exercise 4, find the sun's hour

angle when it is due west; when it sets; find its azimuth at sunset; find

the length of day.

6. With latitude and declination as in Exercise 4, find the sun's altitude

and azimuth when its hour angle is 45.

7. The sun, in declination 12 22', is observed to have an altitude of

30 when due west. What is the latitude of the station?

8. The declination of Polaris being 88 49', find his azimuth and hour

angle at greatest elongation at a station in latitude 40 49'.

9. As in Exercise 8 for the star 51 Cephei, 5 = 87 11', and for 6 Ursac

Minoris, 6 = 86 37'.

10. The stylus of a horizontal sundial consists of a rod pointing to the

north celestial pole. Hence its shadow falls due north when the sun is on
the meridian, that is, at apparent noon. What angle does its shadow make
with the meridian one hour after apparent noon, at a place in latitude 40?

(Suggestion. In Fig. 96 let nP - 40 and Z ZPS 1* or 15. The
stylus lies in the line P'P, and its shadow, cast by the sun fl, must lie in

the plane SP'P, and hence will fall on the plane of the dial, swne, along
the line of intersection of these two planes. This line will be determined

by the center of the sphere and the point where arc SP produced will

meet arc ne. Call this point S'. Then arc nS' measures the required

angle, and may be found by solving right A nPS', in which nP = 40 and
Z nPS' - 15).

11. What angle does the shadow of a horizontal sundial make with its

noon position t hours after noon in latitude <f>1

Ans. tan x = tan t sin <p, x being the required angle.

12. Calculate the angles which the hour lines of a horizontal sundial

make with the noon-line in an assumed latitude.



ANSWERS TO THE ODD NUMBERED EXERCISES

Exercises 1 .

1.

sine

0.537

cosine

0.842

Exercises 2.

tangent
0.638

cosines

3. 0.484 0.469 0.454 0.438;

5. 45, 45, 45.

cotan. secant

1.580 1.188

secants

2.073 2.146 2.220

Exercises 3. 11.

COS

5/13

sec a tan a

13/5 12/5

cosec.

1.872.

2.293.

COt a

5/12.

3/10 10/3 V91/3 3V9T/91.

oi/ioi %/ioI 10 1/10.

Exercises 4. 14.

1. 6, c, ft: 142.8, 174.3, 55. 3. a, 6, ft: 55.8, 50.2, 42. 6. a, c, ft: 470,

886,32. 7. a, 6, ft: 0.034, 0.029, 40. 9. b, c, a: 21.4, 27.2, 38. 11.81.9

ft. 13. 104.6 ft. 15. 291 ft. 17. 35. 19. 10.0 in.

211
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Exercises 6. 22.

Exercises 7. 24.

secant

2

-2
-V2
-V2

tangent cotan.

- 1 - 1.

_ V3 - V3/3.

V3 V3/3.

1 1.

- 1 -1.

1.

Exercises 8. 25.

3. 6. 7. 9. 11.

vers0:(2-V3)/2 1/2 3/2 (2+V3)/2 3/2 1/2

covers 0: 1/2 (2-V3)/2 (2-V3)/2 1/2 (2+V3)/2 (2-\/3)/2

hay 0:(2-V3)/4 1/4 3/4 (2+V3)/4 3/4 1/4

Exercises 9. 28.

1. 15, 300, 561, 288, 264. 3. 75, - 85 56' 37", 81 17' 45", 21

48' 10", 80 48 r
35". 6. 16 33' 36", 264 3', 110 48' 13". 7. 25*712,

-7T/8, 25X/24, 1.85005, 1.63625. 9. 0.002009, 0.000048, 0.00000048,

0.21091, 0.37703.

1. 12\/3, STT, 487r -

Exercises 10. 29.

3. 5V2.
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Exercises 11. 31.

213

3. Radians: 1/4, 5/4, 1/5, 1/50; degrees: 14.32, 71.62, 11.46, 1.15.

6. 120 in., 128 in., 1700 sq. in. 7. 0.5 rad. 9. Angle = 0.4 rad. = 22 55',

arc = 10.88, sector = 500, triangle = 486.7, segment = 13.3. 11. 3 rad.

13. 90. 16. 270rad./sec.

1. 0.5360,

3. 0.8820,

0.6350,

1.8715,

Exercises 12.

1.1846.

2.1220.

6. 0.8442,
-

1.5747,
- 1.8656.

7. -0.8820, 1.8715, -2.1220.

9. -0.8442, 1.5747, -1.8656.

11. 0.4712, -0.5343, -1.1338.

Exercises 13. 35.

1. 45 4- 2/iTT, 135 4- 2mr. 3. 30 + 2/1*-,
- 30 -f 2mr. 5. 30 4- 2>i7r,

150 4- 2wir. 7. 45 + 2mr, - 45 4- 2nw. 9. 45 + 2mr, - 135 + 2nw.

11. - 45 4- 2tt7r, 135 4- 2mr. 13. 17 24' + 2rnr, 162 36' 4- 2mr.

16. 3148' 4- 2tt7r,
- 148 12' + 2mr. 17. 121 48' + 2wir,

- 12128' + 2mr.

Exercises 14. 36.

(In each case the first angle is the principal angle.)

1. 60, 120. 3. 30, - 150. 6. - 45, 135. 7. - 63 26', 116 34'.

9. 75 31'. 11. 41 49', 138 11'. 13. 131 49'. 15. 126 52'.

17. -41 49'. 19. 48 11'. 21. 80 58'. 23. - 60 57'. 26. 61 38'.

27. 138 35'. 29. 55 23'.

Exercises 15. 37.

1. 30 4- nTr, 90 4- TIT. 3. 51 + n-72, - 3 + w-72. 6. 10 + 7i-45,
- 20 + n - 45. 7. 1 38 54' 4- SWTT,

- 78 54' + 3w T. 9. 25 + n 90.

Exercises 16. 39.



214 ANSWERS TO ODD NUMBERED EXERCISES

Exercises 17. 40.

3. (1 Vl - sin2 z)/sin
2
x. 6. 2 esc2 0/(csc

2 -
1).

Exercises 18. 41.

1. nir; 30-f2n7r, 150 + 2nw. 3. 60 + 2mr, - 60 -f 2n7r. 6. 45

+ 2nir
1
225 + 2/i7r;

- 45 + 2n^, 135 + 2mr. (More compactly: nr 45).
7. riTr; 60 + 2ri7r. 9. 60 + 2n7r, 120 + 2mr. (More compactly:
riTr 60.) 11. 22 30' + 2nw, 202 30' + 2mr',

- 67 30' + 2nir, 112

30' + 27i7r. (More compactly: TITT + 22 30'; n7r-6730'.) 13. -126
52' + 2rt*-. 15. 90-t-2nir; 36 52' + 2mr. 17. 45 + 2rur, 225 + 2n7r;

- 71 34' + 2n7r, 108 26' + 2mr. 19. 36 52 ;

-h 2mr.

Exercises 19. 44.

1. a, 6, 0: 52.02, 24.61, 25 19'. 25. 6, c, 0:29. 186, 37.562, 50 59.2'.

3. a, 6, a: 2344, 1415, 58 53'. 27. a, 6, : 12758, 14247, 41 50.7'.

5. 6, c, 0: 2661, 3058, 60 29'. 29. 6, c, : 163.15, 313.04, 58 35.3'.

7. a, c, a: 1.097, 1.179, 68 27'. 31. 6, , (3: 420.72, 29 8.2', 60 51.8'.

9. 6, c, a: 2352, 3937, 53 19'. 33. a, c, 0: 234.52, 481.67, 60 51.8'.

11. a, c, 0: 0.0873, 0.0913, 17 0'. 35. c, a, 0: 42.223, 50 28.3', 39 31.7'.

13. a, 6, a: 889.0, 236.0, 75 8'. 37. a, 6, a: 32.567, 26.873, 50 28.3'.

15. 6, c, a: 0.04055, 0.05397, 41 18'. 39. a, a, 0: 28641, 41 31.3', 48 28.7'.

17. a, , 0: 52.02, 64 41', 25 19'. 41. a, 0, 7: 200.02, 50 1.5', 69 58.5'.

19. c, a, 0: 3937, 53 19, 36 41'. 43. 6, a, 7: 199.77, 42 3.7', 81 10.3'.

21. 6, a, 0: 0.0267, 73 0', 17 0', 45. a, 6,7: 119.91, 209.93, 58 50.0'.

23. c, , 0: 0.05397, 4118', 48 42'.

Exercises 20. 49.

1. 17 14'. 3. 5 16'. 6. 5670ft. 7. 402.0 ft., 586.1 ft. 9. 23 26'.

13. 809.1 in., 50360 sq. in. 15. 144.5 ft. 17. 34 48'. 19. 34.55 ft.

21. 1418 ft.

Exercises 21 . 50.

1. Proj. on OX: 100, 86.60, 70.71, 50, 0,
-

86.60,
- 50, 0, 50.

Proj. on OF: 0, 50, 70.71, 8.6.60, 100, 50, - 86.60, - 100, - 86.60.

3. Proj. on OX: 271.8, -
321.7, 271.8; on OF: 230.2, - 152.7, - 230.2.

Exercises. 52.

1. (170.5, 42 10'). 3. (111.2, 86 34'). 5. (52.9, 160 53'). 7. (123.0,

261 5').

Exercises 22. 53.

1. (144.2,N266'E). 3. (216.7, N 28 2' E). 5. (157.1, N 33 49' E).

7. (195.1,834 7'E).
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Exercises 23. 54.

1. (68.4 lb., 39 19'). 3. (42.5 lb., 124 15').

Exercises 24. 56.

1. W 30 22' S, 111.5 miles. 6. BL - AB = 3 miles. CL = 2.30 miles.

7. 6.72 miles. 11. 734 ft.

Exercises 27. 59.

1. 764 ft. 3. 8595 ft. 7. 3.44'. 9. 166 in., 9980 in.. 598000 in.

Exercises 28. 61.

1) 3) 5) 7) 9)

1. 5 m. 2.5 m. 6.7 in. 8.6 m. 33.3 m.

2. 3000yd. 750yd. 2400yd. 3333yd. 2066yd.
3. 32. 27. 135. 87.8. 81.6.

6. (a) exact, (b) exact, (c) 171 , (<i) ~~m. 7. 40m. 9. 31.25 m.

Exercises 29. 61 .

1. 610m. 133m. 533m. 1217m. 735m. 3. 220m. 102m. 565m.

1001m. 1127m. 5. b, c, ft: 141, 188, 860 in. 7. 6, c, : 364, 1250, 1300m.

9. a, 6, a: 594, 1430,400m. 11. a, a, 0: 640,352m, 1048m.

Exercises 33. 70.

1. (V5+ V2)/4, (V6-V2)/4, 2+\/3. 3. 0, -1, 0. 6. (Vg-
V2)/4, (\/6 + V2)/4, 2 - vT 7. ( v/6 + V2)/4, ( V2 - V6)/4, - 2 - V3.

9. - 133/205. 11. (6-f 4V21)/25, (- 6 4- 4 \/21)/25, (6 - 4\/21)/25,

(_6-4\/
2l)/25.

Exercises 35. 74.

1. (1/2)V2+ \/3, 2 - V3. (Compare with answers to Ex. 5, 70.)

3. 1/2.

Exercises 36. 76.

1. V3 cos 10. 3. sin 10. 6. - 2 sin 65 sin 15. 7. cos 10. 9. 2

cos 105 sin 35. 11. 2 cos 165 cos 115. 13. sin 80 - sin 40. 16. cos 40
- cos 80. 17. - 1 + cos 100.

Exercises 37. 77.

1. 1,0. 3. 156/205, -133/205, -41496/42025, - 6647/42025.

6. (V54V2)/9. 7. V7(75 32V3)/111. 9. 204/253. 11. 1/2.
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Exercises 38. 80.

1. 32 23'. 3. 32 2'. 6. 43 3'. 7. 6.362. 9. 35. 11. 31 3', 44 25;

101 32'. 13. 82 49', 55 46', 41 25'. 16. 338.3 miles.

Exercises 39. 85. (4-place tables.)

1. 6, c, 7 : 1260.6,1069.3,55. 3. a, c, a: 4.999,7.350,38. 6. a, 6, :

6758, 5802, 87 40'. 7. 657.8, 450.0. 9. 1067.5, 661.1. 11. 145.0, 110.6.

Exercises 40. 86. (4-place tables.)

1. <*, ft c: 54 27', 65 38', 851.3. 3. a, ft c: 26 2', 52 18', 497.5.

6. ft 7, a: 44 28', 99 24', 3825. 7. a, 7, b: 15 18', 12 42', 267.0.

9. 112 28', 27 32.

Exercises 41 . 87.

(5-place tables used for exercises with starred numbers.)

1. ft 7, c: 33 28', 119 14', 59.17; 0', 7', c': 146 32', 6 10', 7.285.

3.* ft 7, b: 32 55', 88 58', 73.16; 0', 7', 6': 30 52', 91 2', 69.07.

6.* a, ft a: 35 14.7', 21 6.3', 2230.9.

Exercises 42. 88. (4-place tables.)

1. 70 40', 47 47', 57 33'. 3. 104 30', 32 3', 43 27'. 5. No solution.

Exercises 43. 90.

(5-place tables used-for exercises with starred numbers. )

1. a, c, 7: 3675, 5781, 70 58'. 3. a, 6,0: 1566, 1068, 42 27'. 6. c,a,0:

0.1776, 76 20', 44 53'. 7. c, ft 7: 156.1, 26 43', 131 56'; c', /a', 7': 19.57,

153 17', 5 22'. 9.
, ft 7: 149 49', 3 2', 27 9'. 11.* ft 7, 6: 146

43.6', 14 3.7', 3.5881. 13. 6, , 0: 0.2729, 39 37', 117 51'; 6', <*', 0':

0.0907, 140 23', 17 5'. 16. a, ft 7: 0.00251, 70 17', 51 50'. 17. 6, ft 7:

0.000662, 83 28', 32 42'. 19.* a, a, 0: 1.2379, 162 18.8', 7 8.4'. 21.* a,

c, 7: 57285, 117600, 151 19.6'. 23. 6, a, 7: 0.01068, 81 51', 55 42'.

26.* a, a, c: 34 32.1', 14261, 25100. 27. c, ft 7: 584.1, 51 9', 87 38';

c', 0',V: 100.9, 128 51', 9 56'. 29. c, ft 7: 1191, 32 32', 120 10'; c', 0',

V: 125.7, 147 28', 5 14'. 31.* a, ft 7: 2496.1, 100 10.2', 27 38.8'.

33.* a, 7, c: 39 39.1', 90 0.0', 18464. 36.* ft a, 6: 14 15.5', 0.031083,

0.010735. 37.* 7, a, c: 32 19.7', 43.738, 64.587. 39. c, a, 7: 0.005708,

79 20', 37 0'; c', a',y': 0.002561, 100 40', 15 40'. 61. 7, Vl29, 20 V~3.

63. 7/8. 65. 45, 60,_75; 612.3 ft., 683.0 ft. 67. 261.4. 71. 1.239 mi.

73. 1066 ft. 75. 40V5 ft. 77. 45 3'. 79. 698.3 ft. 81. 22.3, 70.6 ft.

85. 62 ft. 87. 1142 ft. 91. 25, 33J, 41J ft. 93. 37.5 ft. 96. 28 57',

46 34', 104 29'; 5.892, 8.838, 11.784. (The exact values of the sides are

20V5723, 30V2723, 40V2/23.) 97. 27.35 ch.; 97.46 A. 99. 14.4 ch.

north of AB. 101. 718.7 Ib. 103. 2.51 sec. 106. 48 53'. 107. Total

defl.
- (i

-
r) + (i*

-
r'), where r - ShvV Y r' - a -

r, and i' -

Sin"1
(ju sin r').
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Exercises 44. 94.

1. 30, T/6. 3. - 90, -
7T/2. 6. 60, T/3. 7. - 30, - v/6. 9. 30,

ir/6. 11. 90, 7T/2. 13. 150, 57T/6. 15. 90, *-/2. 17. 30, x/6.

19. -60, -7T/3. 21. 78 27'. 23. 54 44'. 26. 120 52'. 27. 71 34'.

29. 67 30'. 31. -33 41'. 33. 53 8'. 35. - 7G 43'. 37. - 18 26'.

39. 53 8'. 41. 3/VlO. 43, V(X9. 45. 5/3. 47. 0.4V5. 49. VTo/10.

61. -4\/5. 53. V3/3. 65. 3/2. 57. -8/17. 69. 0.4^5.

Exercises 46. 106.

1. V2, - 45; 5, Arctan (3/4); Vl46, TT + Arctan (- 11/5); 2, 90; 2,

0; 2, 0; 0, 30; 3(5,
- 60; 4, 90.

Exercises 47.

3. 3, 3i. 6. xi =2; s2
= 2(cos 72 + i sin 72); x 3

= 2(cos 144 +

z sin 144); etc. 7. s = \/3 (cos n 60 4 / sin n 60), =
0, 1, 2, 3, 4, 5,

or, xi, x,, x3 , etc.,
= V3, ( Vjj + 3/)/2, (- v x

3 + 30/2, etc.

Exercises 49. 119.

1. c, a, /i: 112 44', 133 28', 67 50'. 3. n, 6, c: 4 3', 44 19', 44 29'.

6. b, a, ft: 40 39', 122 38', 50 16'. 7. a, 6, a: 146 34', 109 48', 144 57'.

9. No solution. 11.* a, 6, 0: 32 3.4', 138 17.0', 120 46.1'. 13. a, j3,y:

129 59', 36 54', 59 3'. 16. 6, a, 7: 78 11', 13 51', 129 42'. 17. 5, a, ft:

84 54', 108 28', 84 37'. 19.* a, b
9

: 28 46.5', 63 57.3', 12 41.7'.

21.* a, , 7: 122 17.5', 132 15.8', 118 53.9'.

Exercises 50. 131.

1. a, 0, 7: 81 39', 70 10', 64 47'. 3. a, 0, 7: 140 0', 61 40', 26 30'.

5. 6, a, 7: 117 5', 65 30', 123 21'. 7. a, 0, 7: 82 7.0', 111 32.8', 92

28.4'. 9. 6, c, a: 157 40', 33 20', 62 51'. 11. 6, c, : 134 55.3', 62

47.7', 111 39.6'. 13. a, 6, c: 163 34', 169 40', 8 11.6'. 16. a, b, c:

49 24', 149 34.4', 148 33.5'. 17. a, , 7: 118 20', 136 57', 29 40'.

19. c, ,7t 153 38.7', 42 37.3', 160 1.4'; or c', ', 7': 90 5.7', 137 22.7',

50 18.9'. 21. 6, c, 0: 124 59.4', 33 22', 83 25.6'. 23. b, c, 7: 57 35',

154 15.5', 151 15'; or 6', c', y': 122 25', 64 2.2', 84 41.7'. 26. c, a, (3:

48 46.4', 121 28.6', 28 33.3'. 27. a,0,y: 53 38.8', 118 15.8'; 112 14.2'.

29. 6, a, 7: 125 30.9', 34 59.3', 33 11.6'. 31. a, 6, 7: 23 57.2', 118

2.2', 102 5.8'. 33. a, 6, c: 165 25.3', 14 34.7', 168 47.2'. 36. a, a, 0:

18 48.7', 53 38.8', 118 15.8'. 37. 6, , 0: 118 2.2'. 27 22.6', 91 26.7'.

39. a, a, 7: 152 43.8', 153 17.1', 78 15.8'.

Exercises 51. 133.

1. Latitudes: 43 01', 31 47', 25 32'; longitudes: 132 12', 147 46',

154 04'; courses: S5243' W, S 43 11' W, S4008' W. 3. 137 11' W;
788 naut. miles. 6. 6829 naut. miles. 7. 168 38' W; S 42 59' W; 3410

naut. miles.
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Exercises 52. 136.

1. N. Y.-S. F. 2568 statute miles, N. Y.-M. C. 2090 s.m., S. F.-M. C.

1889 s.m.; angles: N. Y. 48 58', S. F. 55 48', M. C. 82 40'; area

2025300 sq. miles. 3.* 7929.1 naut. mi. 5.* 23 36.3' N, 145 6.7' W;
S 48 31.3' W. 7.* 1617.3 naut. mi., C at Manila S 35 13.2' W, C at

Tokyo S 43 22.8' W. 9. 1380 n.m., 1436 n.m.

Exercises 54. 142.

1. 40 48'. 3.* 18 h. 33m. 50s., 10 h. Om. 21s. 6.* 18 h. 33 m. 50s.,

110 16.1', 13 h. 48m. 34s. 7. 25 21'. 9. At western elongation: 176 17',

5h. 50m. 16s.; 175 32', 5h. 48m. 16s.



INDEX
Abscissa, 4

Airplane:
uir speed of, 70

ground speed of, 70

Altitude of sun, 208

Angle :

circular measure, 32
mil measure, 80

negative, 2

positive, 2

radian measure, 30

Arc, circular, 33

Area :

of plane triangle, 130

of spherical triangle, 1(53, ISO

Astronomical triangle, 208
Azimuth:

difference, 90

in Astronomy, 208
of a line, 90

Basic angles, 39

Bearing:
in navigation, 192

in plane sailing, 74

in plane surveying, 73
Celestial equator, 208

poles, 208

sphere, 207

Co-functions, 15

Complex numbers, 153

Coordinates :

Mercator, 202

polar, 151

rectangular, 2

terrestrial, 198

Course, 206

great circle, 192

rhumb line, 204

Coversed sine, 29

Declination, 208
Delambre's Analogies, 180

I)c Moivre's Theorem, 155

Departure, 73

Displacement, angular, 34

linear, 34

Distance, in surveying, 72

great circle, 191

rhumb line, 204

Forces, as vectors, 204

components of, 71

resultant of, 71

Gauss's Analogies, 180

Great Circle, 103

Greatest Elongation, 209
Haversine:

definition, 29

formulas, 184

Horizon, 208
Hour angle, 208
Hour circle, 208

Hyperbolic functions, 161

Initial line, 2

Inverse functions:

definition of, 42

general value of, 139

graphs of, 140

principal value of, 43, 139

Latitude:

in surveying, 73

terrestrial, 165

Law of Cosines:

plane triangle, 115

spherical triangle, 175

Law of Sines:

plane triangle, 114

spherical triangle, 174

Law of Tangents, 117

Meridian, 208

219
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Middle Latitude, 202

Mil, 30, 86

Mollweide's Equation, 120

Napier:

analogies, 178

rules, 169

Nautical Mile, 190

Ordinate, 4

Parabolic trajectory, 93

Parallax, defined, 91

in Astronomy, 92

Parallelogram law, 68

Polar distance, 208

triangle, 163

Principal angle, 43

Projection of a line segment, 50-64,

65

Quadrant of an angle, 2

Quadrantal angle, 39

triangles, 173

Quadrants, 2

Radian, 30

Radius vector, 151

Rhumb Line, 199

course, 204

distance, 204

Roots of Unity, 157

Sailing:

composite, 206

great circle, 191,206

Mercator, 206

middle latitude, 206

parallel, 206

plane, 74

Sector, circular, 33

Segment, circular, 33

Significant digits, 52

Simple Harmonic Motion, 78

Speed:

angular, 34

linear, 34

Spherical triangle, 163

Sun dial, 210

Surveying, plane, 72

Terminal side, 2

Time sight, 209

Trigonometric equation, 49, 146,

148

Trigonometric functions :

approximate values of, 7

definition of, 4

graphs and periodicity of, 18-23

line values of, 8

of acute angles, 10, 11

of complementary angles, 15

signs of, 6

Vectorial angle, 151

Vectors :

angle of, 67

components of, 66

definition of, 66

length of, 67

resultant of, 68

sum of, 67

Velocity, 69

Versed sine, 29

Vertex :

method, 195

of great circle, 195

Waves :

amplitude of, 76

length of, 76

phase of, 76

simple, 76

Zenith, 208

Zenith distance, 208



APPENDIX

A

THE GREEK ALPHABET

FORMULAS OF PLANE TRIGONOMETRY

Definitions. In right triangle ABC, whose sides are a, 6, c

. a
4

6
sin A = ~> cos A = -ce .

4
tan .4 T>

o

^
esc A >

-> sec A
a

x A
cot A =

a

More generally, if x be an angle of any magnitude, as XOP in

figure 4,

ordinate
sin x =

-77-7
-

> cos a:

CSC X

-77-7
-

distance

distance

abscissa
-^-~
-->

distance

distance
"1
--

'

abscissa

,

tan x =

x =

ordinate
t

: >

abscissa

abscissa-
r;
-

1" "1
- -

r
-

T
ordinate abscissa ordinate

vers x = 1 - cos x. covers x = 1 - sin x.

l f , !
1 - cos x

haversme of x = hav x = | vers x =-
5
--

221
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Relations between the functions of an angle. Formulas,

Group A. 19.

.,
1 o x lex cos a:

1. sin x = 3. tan x = - 5. cot x =
esc x cot x sin x

2. cos x = 4. tan x = 6. sin2 x + cos2 x = 1.
sec x cos x

7. 1 + tan2 x = sec2 x. 8. 1 -h cot2 x = esc2 x.

Rules for expressing any function of any angle in terms of a

function of an acute angle. 2 1 .

Any function of any angle x is numerically equal to the

[same function f i j- u j u (even ,

< - . . of a: increased or diminished by any <
, ,

mul-
[
co-function ^odd

tiple of 90.

The sign of the result must be determined according to the

quadrant of x.

Functions of + x and - x. 23.

/(+ x) = /( x), when / = cosine or secant.

/(+ x) = - /(- x), when / =
sine, cosecant, tangent, cotangent.

Angles corresponding to a given function. 34.

Let 0i and 62 be the basic angles corresponding to a given value

of a function. Then all angles are Q\ + 2mr and 2 + 2nir, where

n is any integer, positive or negative, or zero. In exceptional

cases there may be only one basic angle.

Formulas, Group B. 69.

9. sin (x + y) = sin x cos y + cos x sin y.

10. cos (x + y) = cos x cos y - sin x sin y.

11. sin (a:
-

y)
= sin x cos y - cos a; sin y.

12. cos (x
-

y) = cos x cos t/ + sin x sin y.

tan x 4- tan ?/
13. tan (x -f y) =

14. cot (x + y) =

1 - tan x tan y

cot x cot y - 1

cot x -i- cot ?/



16. tan (x
-

y) =
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tan x - tan y

1 -f- tan x tan y

1C . f v cot x cot y + I
16. cot (x

-
T/)

= 7 ^-7
cot y - cot x

Formulas, Group C. 73.

Double Angle. Half-Angle.

17. .sin 2x = 2 sin x cos x. 20.
' ' ' '" COS *

3. sin |z = + V

/I
I COS X

-w. v,v^ *,*, - vvyo ^ - on* ^, *. v^, 7 2~ -
j. ^ ^

= 1-2 sin- x, 00+1 M - cos
'

22. tan - --
*-*VF cos x

2cos2 :r-l. _ cos x

19. tan 2x =

sin x

2 tan x sin x

I - tan2 x 1 + cos x

Formulas, Group D. 75.

~~ . . f* U + V U V
23. sin u -f sin y = 2 sin ^ cos ^

Solution of right triangles. Solve by moans of the definitions

of the trigonometric functions.

Oblique plane triangles. Formulas, Group E.

1. Law of Sines: a : b : c = sin a : sin : sin 7 78.

2. Law o/ Cosines: a2 = 62 + c2 - 26c cos a. 79.

or r m . a - 6 tan \(a -
0) RQ1

3. Law of Tangents: f
= 7 f) r 81.' y a + 6 tan |(a + 0)
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Half-angles. 82.

Let s =
-|(a + 6 -f- c) and r =

r~ a )

s - a

Area. 89.

8. K == %ab sin 7. . 9. K = rs.

Solution of oblique plane triangles.

Case I. Given two angles and a side. 85.

Use law of sines.

Case II. Given two sides and the included angle. 80.

Use law of tangents, then law of sines

Case III. Given two sides and an opposite an.de. 87.

Use law of sines. Ambiguous case.

Case IV. Given the three sides. 88.

Use one of the formulas (4), (5), (6), or (7).

FORMULAS OF SPHERICAL TRIGONOMETRY

Spherical right triangle. 114-118. Let a, 0, 7, be the

angles and a, 6, c the sides. Arrange the five parts a, b, co-/3,

co-c, co-a in circular order. These parts are then connected by

Napier's Rules:

.. . , ,.
J (product of cosines of opposite parts;

sine of middle part =<
(product of tangents of adjacent parts.

To solve a spherical right triangle use Napier's Rules to write

a formula involving the two given parts and a required part.

To solve a quadrantal triangle, solve its polar right trwigle.

Spherical oblique triangles. Formulas, Group F.

1. Law of Sines: sin a : sin 6 : sin c = sin a. : sin : sin 7.

120.
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2. Law of Cosines: cos a = cos b cos c -f sin b sin c cos a.

120.

3. cos a = - cos ft cos 7 -|- sin /3 sin 7 cos a.

121.

Half-angles. 122.

, x ,

6 + c); tan r
/sin (s

-
a) sin (s

-
b) sin (s c)= */-----------

^ sin

_ . , /sin (,s
-

6) sin (s
-

c)
5. sin ^a - \--

=

~ ----

J sin o sin c

- . /sin s sin (s
-

a)
6. cos "'

r -. :

sin o sin c

V *o 1
-

'
~

7. tan Aa = -4/-- .

--
-.

--
r

sin s sin (s a)

x i
tan r

tan Ja =
sin (s a)

Half-sides. 123.

\jr
+7); tan fi =

cos(N -
) cos (8 /3) cos (S 7)

.. - . , /- cos AS cos (,S
- a)

14. sm Ja = 4^ -.-

-

T[ sm 13 sm 7

//WViJ I

15. cos Ja
V^os

(S -

si5in p sm 7

+ .

1 /

- cos cos ( N a) .

16. tan \a = ^ ' v

cos (<S
-

j3) cos (*S
- 7)

17. tan \a = tan R cos (S
-

a).

Napier's analogies. 124.

nn> x i / t\ SU1 J(
~

j8) x !20 . tan |(a
-

6) = -
j~ ^ tan ^c.2V y

sin \(a -f /3)

2

01 / x i / r \ ros o ( /3) , ,21. tan |(a + 6)
- _|_^5

tan Jc.

22'. tan J(
-

0) = ^IS^^S cot 47 .2V ^' sm -J(o + 6)
"

oo> , , f ^ cos *(a b) ,
,

23 . tan ( + )
=

r? ,~fs cot ^7-
cos

7];(a -f b)
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Delambre's or Gauss's analogies. 125.

fH I/ n\ COS K -
&)v

Case V. Alternative method. Given, b, c, a; calculate a, 0,

7- 128.

28. tan m = cos a tan 6
;
tan n = cos a tan c.

29. cos a = cos 6 sec m cos (c m) = cos c sec n cos (6 n).

30. cot = cot a esc m sin (c
- m).

31. cot 7 = cot a esc n sin (6
-

n).

Haversine formulas. 129.

sin (s
-

b) sin (s
-

c)
32. hav a =

33. hav a =

sin 6 sin c

hav a - hav (b
-

c)

sin 6 sin c

34. hav a = hav (6
-

c) + sin 6 sin c hav a.

Spherical excess. Area. 126.

E =
(ot + p + y)

- 180.

Solution of spherical oblique triangle. 127-9.

I. Given two sides and an opposite angle.

Use law of sines, then Napier's Analogies. Two solu-

tions possible.
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II. Given two angles and an opposite side.

As in I.

III. Given the three sides.

Use formulas for the half-angles.

IV. Given the three angles.

Use formulas for the half-sides.

V. Given two sides and their included angle.

Use Napier's Analogies, 22' and 23', then law of sines.

VI. Given two angles and their included side.

Use Napier's Analogies, 20' and 21', then law of sines.

Alternative method under Case V. 128.

Ilaversine method. 129.

Vertex method. 134.
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B EXPLANATION OF THE TABLES

AND THEIR USE

TABLE I

Common logarithms. Definition. The common logarithm of a

number is the exponent which must be applied to 10 to produce the

given number.

The symbol for the common logarithm of a number n is logm n,

which is read :

"
The logarithm of n to the base 10."

Examples.

102 - 100

103 = 1000 .'. common
10 = 1 logarithm

lO'1 - 0.1 of

10-2 = 0.01

100-2, or loglo 100 = 2.

1000 =
3, or loglo 1000 - 3.

1=0, or log, 1=0.
0.1 - -

1, or loglo 0.1 = - 1.

0.01 - -
2, or logio 0.01 - - 2.

In these equations 10 is called the base of the system of loga-

rithms. Other numbers might be used as bases, but for purposes

of computation the base in common use is 10.

In general, if n =
10*,

then the common logarithm ofn =
x, or logio n = x.

228
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Theory of logarithms. So much of the theory of logarithms as

is required in ordinary computation may be summed up in the

following rules:

I. The logarithm of a product equals the sum of the logarithms

of the factors.

logio rn-n = logio m + logio n.

II. The logarithm of a fraction equals the logarithm of the nu-

merator minus the logarithm of the denominator.

i
m

i i

logio
=

logio m -
logio n.

n

III. The logarithm of the pth power of a number equals p tunes

the logarithm of the number.

logio rnp = P logio m.

Proofs.

I. Given two numbers m and n whose common logarithms

are x and y respectively.

That is login m = x and logio n = y.

Then by definition of logarithms,

m = 10X and n = 1O.

Hence m n = 10T 10" = 10r+".

Therefore logio M n = x 4- y logio ? -f logio n.

II. Proceeding as in I except that we divide m by n, we have

??? 10* 1A= = lO*-".
n 10*

Therefore logio
~'

= x - y = logio m -
logio w.

fi

HI. To prove that logio mp = p logio m, let x be the common

logarithm of m.

That is logio m = a:.

Then m = 10*.

Raising to pth power: ?np = (10*)
p = 10px .

Therefore, by definition of a logarithm,

logio mp = px = p logio w-
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This proof holds whether p is an integer or not. In applying

the formula roots are to be written as fractional exponents, thus:

logio ^m2 =
logio nil = | logio m.

Exercises. Prove:

1. logio mnr = logio m + logio n + logio r.

2. logio * logio m + logio n logio r logio 8.
TS

3. logio mpnq = p logio m + q logio n.

4. logio = p logio m 5 logio n.

6. logio Vw3 5 = f logio m + | Iog10 n.

- .
^ /W2n o , , ,

,

6. logio
j-jj-

= i logio /ft + i logio rc J logio r.

(mnY
7. logio ^-r~8

= 3 logio m + 3 logio n\ logio r \ logjo s.

The proofs of rules I, II, III are also valid when the base 10 is

replaced by any other positive number. In what follows we deal

exclusively with the base 10, and hence we shall usually omit the

subscript 10, so that log\Qm will be written merely log m.

Numerous applications of these rules will be found in the

explanation of the use of Table I.

Table of common logarithms. If we ask the question

What power of 10 will give 302? we can see at once that the

answer must lie between 2 and 3, because 302 lies between 102

and 103
. That is, 302 = 102

+, and logio 302 = 2.+.

The necessary decimal can be supplied by reference to a table

of logarithms ,
such as Table I.

The function of such a table is to furnish the decimal part of

the common logarithm of any number. The tables in this text

give these decimals to four places. For more accurate compu-
tations 5-place, 6-place, and 7-place tables are in common use.

The integral part of the logarithm is to be supplied by the com-

puter.

Definitions. The integral part of a logarithm is called the charac-

teristic, and the decimal part the mantissa.
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Rules for characteristics.

(a) When the number has n significant figures to the left of

the decimal point, the characteristic of its logarithm is n - 1.

(b) When the number is a decimal with n ciphers between the

decimal point and the first digit which is not zero, the charac-

teristic of its logarithm is 9 -
n, and - 10 must be supplied to

complete the logarithm.

The reason for these rules will become evident when we con-

sider an example.

Example. Let us find log 302. In the table find 30 in the

left-hand column and run across the page horizontally to the

column headed 2. There we find that mantissa of log 302 =

.4800. Now 302 lies between 100 and 1000, i.e. between 10- and

103
. Hence, by the definition of a logarithm, log 302 must lie

between 2 and 3. Therefore the characteristic is 2, and

log 302 = 2.4800.

This is of course not the exact logarithm of 302, but only its

value to four decimal places.

Writing the last equation in exponential form, we have

302 = 102 - 4800
.

Multiplying both sides by 10,

3020 = 10 x 102 4* = 10'- 4800
. Hence, log 3020 = 3.4800.

Multiplying again by 10,

30200 = 10 x 103 - 4800 = 10*.. Hence, log 30200 = 4.4800.

Therefore, wrhcre a number is multiplied by 10, the character-

istic of its logarithm is increased by 1; the mantissa remains

unchanged.

Dividing the above equation successively by 10, we obtain

30.2 = 102 480
-4- 10 = 10 1 - 4800

,

3.02 = 10 1 480 + 10 = 1004800
,

.302 = 1004800 - 10 - 10 - 4800-1

,

.0302 = 10 - 4800- 1
-f- 10 = 10 ^M-2

,

.00302 = 100480 -2 ^ 10 = 100480 -3
,
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and so on. As logarithmic equations these are:

log 30.2 =
1.4800,

log 3.02 =
0.4800,

log .302 = 0.4800 - 1 = 9.4800 -
10,

log .0302 = 0.4800 - 2 = 8.4800 -
10,

log .00302 = 0.4800 - 3 - 7.4800 -
10,

and so on. The second form in the last three equations is used

for convenience in computations; it is in accordance with rule

(b).

To discuss rules (a) and (b) more generally, let m be any

number. Then by the definition of a logarithm, when

m lies between log in lies between

(1) 1 and 10, and 1,

(2) 10 and 100, 1 and 2,

(3) 100 and 1000, 2 and 3,

(4) 1000 and 10000, 3 and 4,

and so on. Therefore, when m has

(1) 1 digit to the left of the point, log m = 0.4-
;

(2) 2 digits to the left of the point, log m = 1.4-
;

(3) 3 digits to the left of the point, log m = 2.4-
;

(4) 4 digits to the left of the point, log m = 3.4-
;

and so on. Hence rule (a).

In the case of decimal numbers,

when m lies between log m lies between

(1) land 0.1, Oand-1,
(2) 0.1 and 0.01,

- 1 and -
2,

(3) 0.01 and 0.001,
- 2 and -

3,

(4) 0.001 and 0.0001, - 3 and -
4,

and so on. That Is, when m is a decimal number in which

(1) no cipher follows the point, log w = 9.4- 10;

(2) 1 cipher follows the point, log m = 8.4- -
10;

(3) 2 ciphers follow the point, log m = 7.4- -
10;

(4) 3 ciphers follow the point, log m = 6.4- -
10;

and so on. Hence rule (b).
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Interpolation. Example. Find log 3024.

From the table,

mantissa of log 302 =
.4800; ,.

f i ono AQ*A difference = .0014.
mantissa of log 303 =

.4814;

Assuming that the increase in the logarithm is proportional

to the increase in the number, we have

mantissa of log 3024 = .4800 + .4 x .0014 = .4806.

The result is here given to the nearest unit in the fourth decimal

place, .4 x .0014 being taken equal to .0006 in place of .00056.

Proportional parts. For convenience in interpolation, the

tabular differences greater than 20 are subdivided into tenths

and tabulated under the heading
"
Prop. Parts/' When the

difference is less than 20, the interpolation is best made men-

tally. If it is desired, the table of proportional parts may be

used when d < 20 by taking half the proportional part corre-

sponding to double the difference.

Examples.

1. log 164.3 = ?

Mantissa of log 164 = .2148; d = 27,

Correction for .3 = 8

log 164.3 = 2.2156

2. log (164,3)' = ?

log (164.3)? = f log 164.3,

= (2.2156) = 1.4771.

3. log. 01047 = ?

Mantissa of log 104 = .0170; d = 42,

Correction for .7 = 29

log .01047 = 8.0199 - 10

4. log v^01047p = ?

= (.01047)*,

= f log (0.01047),

= f (8.0199 - 10).

4(8.0199 - 10) = 32.0796 - 40 = 22.0796 - 30.

$(22.0796 - 30) - 7.3599 - 10.

Note. When a logarithm which is followed by - 10 is to be divided by a
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number, add and subtract a multiple of ten so that the quotient will come
out in a form followed by - 10. Thus:

1(8.2448
- 10) = (38.2448 - 40) = 9.5612 - 10.

Anti-logarithm. The number whose logarithm is x is called the

anti-logarithm of x.

Thus, if x = log m, then m = anti-log x.

Given a logarithm, to obtain the corresponding number (anti-

logarithm}.

Examples.
1. log m = 0.4806. m = ?

The given logarithm lies between the tabular logarithms .4800 and

.4814, to which correspond the numbers 302 and 303 respectively.

Thus we have

Number. Mantissa of log.

302 .4800)
I f

m .4806
?

303 .4814

Hence, without'regard to the decimal point, m = 302 + W = 3024+ .

Pointing off properly,

m = anti-log 0.4806 = 3.024+.

2. log m = 7.0959 - 10. m = ?

mantissa of log 124 - .0934)
]

mantissa of log m = .0959 J [
35

mantissa of log 125 = .0969 J

Hence m has the sequence of figures

124 + II = 1247+.

Pointing off properly,

m = anti-log (7.0959 - 10) = .001247+.

Note. The value of the quotient $ f may be obtained from the column of

Prop. Parts by finding the number of tenths of 35 required to equal 25. We
have from this column,

.7 x 35 - 24.5 and .8 x 35 - 28.0.

Hence we see that to make 25 we need a little more than .7 X 35. A close

approximation would be .71+ , making m = .0012471+.
When the tabular difference is large, it is possible to obtain correctly

more than four significant figures of a number when its four-place logarithm
is given.

Cologarithm. The cologarithm of a number is the logarithm of

the reciprocal of the number.
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Thus : colog m =
log

=
log 1 - log m - -

log m.
Tit/

In practice we usually write it in the form

colog m = -
log m =

(10
-

log m) 10.

Rule. To form the cologarithm of a number, subtract its

logarithm from 10 and write 10 after the result.

Examples.

1. colog 302 = (10 - log 302) - 10

= (10 - 2.4800) - 10 - 7.5200 - 10.

2. colog .003024 - (10 -
log .003024) - 10

= (10
- [7.4806 -

10])
- 10 = 2.5194.

Use of the cologarithm.

v i r- i i * *i i * 302 X .415
Example. Calculate the value of -7^^'o41 X .Uo^o

Let m be the value of the given fraction. Then without the use of

cologarithms the calculation is as follows.

log m = log 302 + log .415 - log 541 - log .0828.

log 302 = 2.4800 log 541 = 2.7332

log .415 = 9.6180 - 10 log .0828 = 8.9180 - 10

12.0980 - 10 11.0512 - 10

11.6512 - 10

log m = 0.4468, m - 2.7975.

To use cologarithms, we write

log m = log 302 + log .415 + colog 541 -f colog .0828

log 302 = 2.4800

log .415 - 9.6180 - 10

colog 541 = 7.2668 - 10

colog .0828 - 1.0820

log m = 20.4468 - 20

m= 2.7975.

As a last example, we calculate the value of the quantity,

(
- 522.3)

3 X (.01242)*

To take account of the signs, which must be done independ-

ently of the logarithmic calculation, we note that the cube of a
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negative quantity occurs on both sides of the fraction; hence the

sign of the fraction is plus.

We now write

log m =
J[log (.00812)! + log (471.2)

3 + colog (522.S)
8

+ colog (.01242)2].

log .00812 = 7.9096 - 10 log (.00812)1
= 8.6064 - 10

log 471.2 = 2.6732 log (471.2)
3 = 8.0196

log 522.3 - 2.7179 log (522.3)
3 = 8.1537

log .01242 = 8.0941 - 10 log (.01242)*
= 8.5706 - 10

Hence log (.00812)?
= 8.6064 - 10

log (471.2)
3 = 8.0196

colog (522.3)
3 = 1.8463 - 10

colog (.01242)5
= 1.4294

2 19.9017 - 20

log m = 9.9508 - 10

m = .8929.

Exercises. Verify the following equations:

1. log 7 = 0.8451. 17. colog .0448 - 1.3487.

2. log 253 - 2.4031. 18. colog V5475 = 8.1308 - 10.

3. log 253.5 = 2.4040. 19 colog ( .ooo3684)$ - 12.0180.
4. log .0253 - 8.4031 - 10.

2Q anta _
6. log .002533 = 7.4036 - 10. 01 . .. .__ ^_ rt

6. log 6544 = 3.8158.
21. ant,log 3.6675 = 46oO.

7. log 4.007 = 0.6028.
22 ' antilog a4000 ' 2 '5118 '

8. log .9995 = 9.9998 - 10.
23 ' antilo (8 '325 ~ 10 )

-->
9 log V766 = 1 4421

24 ' antil g(6 -9525 ~ W) - -0008964.

10! log^ - 7.1158 - 10.
25 '

(.748^_.4185.
11. log (.0022)

8 - 2.0272 - 10. 26. v7- .0822 = - .4348.

12. log ^0022 = 9.1141 - 10.
27 ' (- 6 -213 )^

= 2 -076 '

13. log (.01401)^ = 8.5171 - 10. 28
(- ^

'

14. log (.0003684)? = 7.9820 - 20.

'

v7- (.00475)

16. colog 200 = 7.6990 -10. 1
ft
.
7ftl

16. colog .7 = 0.1549.
29 *

(7^32)3
= '0576L

TABLE II.

This table gives the logarithms of the sine, cosine, tangent and

cotangent of angles from to 90, at intervals of 10'.
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When the angle is taken from the left-hand colum of the page,

the name of the function must be sought at the top of the page;

when the angle is taken from the right-hand column of the page,

the name of the function must be sought at the foot of the page.

When the function is numerically less than 1,
- 10 must be

written after its tabular logarithm. This is the case with the

sines and cosines of all angles between and 90, with tangents

of angles between and 45, and with cotangents between 45

and 90.

For convenience in interpolation the differences of the tabular

logarithms are given, and these differences are subdivided into

tenths in the column of proportional parts. Hence this column

contains the corrections to the tabular logarithms for each min-

ute of angle from I' to 9' inclusive. These corrections are to be

added when the logarithm increases with the angle, and they

are to be subtracted when the logarithm decreases as the angle

increases.

When the logarithm of a function of an angle greater than 90

is required, change to the equivalent function of an angle less

than 90 (21). Algebraic signs must be adjusted independently
of the logarithmic calculation, as in the use of Table I.

Seconds of arc must be reduced to the equivalent fractions of a

minute of arc.

To obtain log sec x, take from the table colog cos x\ for log

esc x use colog sin x.

Examples.

1. log sin 20 13' = ?

log sin 20 10' - 9.5375; d - 34.

d for 3' (Prop. Parts) = 10.2

log sin 20 13' = 9.5385 - 10.

2. log cos 20 13' = ?

log cos 20 10' = 9.9725; d = 4.

d for 3' - 4 X .3 = L2

log cos 20 13' - 9.9724 - 10.
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3. log tan 29 47' = ?

log tan 29 40' - 9.7556; d - 29.

d for 7' (Prop. Parts) = 20.3

log tan 29 47' = 9.7576 - 10

The same result may also be obtained by starting with log tan 29 50',

thus:

log tan 29 50' = 9.7585; d = 29.

d for 3' = 8.7

log tan 29 47' = 9.7576 - 10.

As a rule, in interpolating start from the nearest tabular number.

4. log cot 29 47' = ?

log cot 29 50' = 0.2415; d - 29.

d for 3' = 8J

log cot 29 47' = 0.2424.

6. log sin 58 44' = ?

log sin 58 40' - 9.9315; d = 8.

d for 4' = 3.2

log sin 58 44' = 9.9318 - 10.

6. log tan 67 23.5' = ?

log tan 67 20' - 0.3792; d = 36.

d for 3.5' - 10.8 + 1.8 = 12.6

log tan 67 23.5' = 0.3805.

Here we obtain d for 3.5' from d for 3' + d for 0.5'. Note that d for

0.5 is simply one-tenth of d for 5'.

7. log cos 105 51 .6' -?
cos 105 51.6' = - sin 15 51.6'.

Neglecting the algebraic sign we have

log sin 15 50' = 9.4359; d = 44.

d for 1.6' = 7.0

log sin 15 51.6' - 9.4366 - 10 = log cos 105 51.6'.

8. log tan 250 34.3' - ?

tan 250 34.3' = tan 70 34.3'.

log tan 70 30' = 0.4509; d = 40.
- d for 4.3' = 17.2

log tan 70 34.3' = 0.4526 = log tan 250 34.3'.

Angles near or near 90.

When an angle, x, lies near 0, sin x, tan x, and cot x vary too

rapidly with x to permit of accurate interpolation of their loga-
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rithms from the table. The same is true of cos x, tan z, and cot

Xj when x lies near 90. We will show how accurate values of

these logarithms may be obtained.

T , , sin x
i ATT i

tan x
Let o =

log and T = log >

x x

x being expressed in minutes of arc. We indicate this by x'.

Then log sin x = log x' + S,

and log tan x = log x' -f T.

When x is small the quantities S and T vary quite slowly with

x. The values of S and T are given in the last column of the

first page of Table II, x ranging from to 5; - 10 is to be

added to the tabular numbers there given.

To get log sin x, reduce x to minutes of arc and take log x'

from Table I; to this logarithm add S.

To get log tan x, add T to log x'.

To get log cot x, first get log tan x and form the cologarithm of

the result.

For, log cot x =
colog tan x.

To obtain log cos x, log tan x or log cot x, when x lies between

85 and 90, calculate the co-function of the complementary

angle by the method given above.

To find the angle from log sin x, log tan x or log cot x, when x

lies near 0, we use the relations

log x' = log sin x -
S',

log x' = log tan x - T;

log x' = - log cot x - T.

The necessary values of S and T can be obtained after finding

an approximate value of x from Table II.

To find x from log cos x, log tan x, or log cot x, when x lies near

90, replace

log cos x by log sin (90
- x) ;

log tan x by log cot (90
- x) ;

log cot x by log tan (90
-

x).

Then 90 - x can be obtained by the method given above for

angles near 0. Hence x is determined.
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Examples.

1. Find log sin x, log tan x and log cot x when x = 1 22' 12".

z = 1 22' 12" = 82.2'. log x' = log 82.2 = 1.9149.

log x = 1.9149 log x = 1.9149

S = 6.4637 - 10 T = 6.4638 - 10

log sin x = 8.3786 - 10 log tan x = 8.3787 - 10

log cot x = colog tan x = 1.6213.

2. Find log cos x, log tan z and log cot x when x 89 5' 50".

Let y = 90 - x = 54' 10" = 54.17'.

Then log cos x, log tan x, log cot x are equal respectively to log sin ?/,

log cot ?/, log tan ?/, which may be found as in example 1.

3. log sin x = 8.2142; z = ?

From Table II, x = 50' + ;
hence S = 6.4637 - 10.

log sin x = 8.2142 - 10

= 6.4637 - 10

log x' = 1.7505; x = 56.30' = 56' 18".

4. log tan x = 8.0804 -
10; x = ?

From Table II, x = 40' + ;
hence T

7 = 6.4638

log tan x = 8.0804 - 10

T = 6.4638 - 10

log 3' => 1.6166; x = 41.36' = 41' 21.6".

6. log cot x = 8.6276 - 10; x = ?

Let ?/
= 90 - z.

Then log tan y = log cot z = 8.6276 - 10.

From Table II, y = 2 20' + ;
hence T = 6.4640.

log tan y = 8.6276 - 10

T = 6.4640 - 10

log y'
= 2.1636; y = 145.73' = 2 25' 44".

Hence x = 90 - y = 87 34' 16".

Let the student obtain the results required in the last five

examples by direct interpolation from Table II.

Exercises. Verify the following equations:

1. log sin 20 40' - 9.5477 - 10. 7. log tan 63 27' = 0.3013.

2. log cos 66 30' = 9.6007 - 10. 8. log sin 81 29' - 9.9952.

3. log tan 29 35' = 9.7541 - 10. 9. log sin 81 31' - 9.9952.

4. log cot 37 25' - 0.1163. 10. log cos 81 29' - 9.1706 - 10.

6. log sec 55 50' - 0.2506. 11. log cos 81 31' - 9.1689 - 10.

6. log esc 44 50' = 0.1518. 12. log cot 9 6' - 0.7954.
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13. log sin 152 27' - 9.6651 - 10. 16. log cot 10' 22" - 2.5206.

14. log sin 2 10' 10" - 8.5781 - 10. 17. log cos 89 28' 44" = 7.9588-10.

15. log tan 1 34' 20" - 8.4385 - 10. 18. log tan 88 46' 14" - 1.6683.

19. log sin x = 9.7926; x - 38 20'.

20. log sin x = 9.3548; x - 13 5'.

21. log sin x - 9.8867; x - 50 23'.

22. log cos x = 9.6030; x - 66 22'.

23. log tan x - 0.6278; x = 77 44.5'.

24. log cot x = 0.0906; x = 39 4'.

26. log cot x = 0.6648; x = 12 12.5'.

26. log sec x = 0.1374; x = 43 13'.

27. log esc x - 0.2890; x - 30 56'.

28. log sec x = 0.6680; x = 77 35.8'.

29. log *in x = 8.3698; x - 1 20' 34".

30. log tan x = 8.7659; x = 3 20' 18".

31. log cot x = 1.2952; x = 2 54' 3".

32. log cos x - 8.5387; x = 88 1' 8".

33. log cot x = 7.9485; x - 89 29' 28".

34. log esc x = 2.3549; x = 15' 11".

36. log sec x = 1.5102; x = 88 13' 48".

TABLE III

This tablo givos the nuniorical values of the six trigonometric

functions of angles from to 90 intervals at of 10'. The func-

tions of intermediate angles are to be obtained by interpolation.

By using the tables inversely, an angle may be found, usually

to the nearest minute, when a function of the angle is known to

four decimal places.

TABLE IV

A 4-place table of natural and logarithmic haversines at inter-

vals of 10' from to 180.

TABLE V

This is a conversion table for changing from sexagesimal to

radian measure, and conversely. The entries are given to five

decimal places in radians, corresponding nearly to 2
;/

in sexa-

gesimal measure.
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Examples.

1. Express 200 44' 36" in radian measure.

200 = 3 X 60 -f 20

3 X 60 = 3 X 1.04720 = 3.14160 radians.

20 = 0.34907

44' = C.01280

36" - ^0011
200 44' 36" = 3.50364 radians.

2. Express 3.50364 radians in sexagesimal measure.

3.0 radians = 171 53' 14"
0.5

" = 28 38' 52"
0.003

" = 10' 19"
0.0006

" = 2' 4"
0.00004

" =
8^'

3.50364 radians = 200 44'~37"

TABLE VI

This table contains the values of a number of mathematical

constants, generally to fifteen places of decimals.

TABLE VII

This table gives the values of the natural or Naperian loga-

rithm of x, and of the ascending and deccnding exponential

functions e
x and e~z

,
from x = to x = 5 at intervals of 0.05.

As a rule the tabular entries are given to three decimal places.

TABLE VIH

This table gives the values of n2
,
n3

, VVi, and v n, for values of

n from 1 to 100.

The direct use of the table requires no explanation. As an

example of its inverse use we find the approximate value of

v/320. We have

(6.8)
3 = 314.432 (n= 68),

(6.9)
3 = 328.509 (n= 69).

Hence, interpolating linearly,

(6.840)
3 = 320 approx., or ^320= 6.840+.
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V* Degrees to Radians and v.v.
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Y. Degrees to Radians and v.v.

VI. Mathematical Constants

if = 3.14159 26535 89793.

*2= 9.86960 44010 89359.

** = 31.00627 66802 99820.

i- 1.77245 38509 05516.

1 radian

- = 0.31830 98861 83791.

-i = 0.10132 11836 42338.
X*

~ = 0.03225 15344 33199.

-4= = 0.56418 95835 47756.

180

TT

648QOQ"

= 57.29577 95131,

3437'.74677 07849,

- 206264".80624 70964.

radians.

1<> _ 0.01745 32925 19943.

(1)2 - 0.00030 46174 19787.

(1)S =. 0.00000 53165 76934.

radians.

T -0.00029 08882 08666.

(l')2- 0.00000 00846 15950.

(!')= 0.00000 00000 24614,

1" - 0.00000 48481 36811.

(1")2 0.00000 00000 23504.

sin 1 - 0.01745 24064 37284.

sin 1' - 0.00029 08882 04563.

sin 1" 0.00000 48481 36811.

m Naperian base - 1 +,4 + ,4 + ~ 2.71828 18284 59045.
l Li

3f 0.43429 44819 03252; logio n - M log, n.

~- 2.30258 50929 94046; logn logion.
iU ML
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VII. Natural Logarithms and Exponential Functions
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VIII. Squares, Cubes, Square Roots, Cube Roots
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